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We discuss the exact solution of the time-dependent Schr6dinger equation for a system 
of two crossing levels with a residual interaction. In contrast to the familiar Landau- 
Zener (LZ) solution used in most applications, we allow for more general boundary 
conditions; in particular we treat explicitly the case of a finite interval around the 
crossing point. The exact jumping probability is shown to be extremely sensitive to 
these boundary conditions; in many realistic cases it is found to be smaller than the LZ 
value by several orders of magnitude. We also compare the exact excitation energy to 
the one obtained in the usual cranking approach. 

1. Introduction 

Most microscopic models for nuclear collective mo- 
tion use a deformed single-particle hamiltonian to 
create a single particle basis dependent on a set of 
collective variables along which the collective mo- 
tion is supposed to take place. For  any two single 
particle states treated as functions of collective vari- 
ables the phenomenon of level crossing can occur. 
The main part of nonadiabatic effects of a physical 
system is often supposed to be due to such in- 
tersections of energy levels; then different kinds of 
"hopping models" can be applied to describe cor- 
rections to adiabatic collective motion [1-4]. In ap- 
plications, the evaluation of the jump probability at 
level crossings is mostly based on the known Lan- 
dau-Zener solution for a two-level system [5-6]. 
However, this particular solution is obtained with 
somewhat unrealistic conditions: the initial and final 
deformations have to be very different from the de- 
formation at the crossing point while the collective 
velocity is assumed to be constant. In addition, as it 
is supposed in hopping models, the two-level ap- 
proximation is reasonable only as a local approxi- 
mation in the vicinity of the crossing point for two 
single-particle levels. Therefore a better estimation of 
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the jump probability than given by the Landau- 
Zener formula is needed. In the literature, the full 
treatment of the Landau-Zener model is usually re- 
stricted to applications in atomic and molecular 
physics with their specific conditions dictated by the 
physics of the problem [7-9]. The aim of the present 
paper is an analysis of the LZ-model from the point 
of view of its application to nuclear large amplitude 
collective motion. For this purpose, in Sect. 2 the 
full analytical solution of the Landau-Zener model is 
quoted [10-12] with a suitable notation and for 
arbitrary initial conditions. The general formulae for 
transition probabilities between pairs of diabatic or 
adiabatic states are derived in Sect. 3. The discussion 
in Sect. 4 shows that the transition probability is a 
function not only of a diabacity parameter [13, 14, 
3, 4] but also of a deformation-dependent complex 
variable; its behaviour is more complicated than the 
LZ-formula suggests [1, 3, 4, 14], as soon as more 
realistic, finite deformation intervals are consid- 
ered. 
In the past, a lot of activities were devoted to dif- 
ferent approximations and extensions of the LZ- 
model. A revue of these attempts can be found in 
the papers [7-11, 16] and in the references therein. 
It seems that our approach to the LZ-model is 
slightly similar to that proposed by Heinrichs [11]. 
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However, his analysis is restricted to special bound- 
ary conditions which are usually not fulfilled in large- 
amplitude collective nuclear motion�9 In addition 
his resulting transition probability is not a non- 
negative function because of approximations which 
were involved in its derivation. 
In Sect. 5 we compare the exact excitation energy of 
the two-level system with the excitation energy cal- 
culated from the cranking formula. Large relative 
deviations from the cranking estimate are observed 
not only for typical collective velocities occuring e.g. 
in the fission process, but also for relatively slow 
collective motion, with ~.-~ a hundred times smaller�9 
The magnitudes of these deviations are, clearly, not 
too large for small ~. However, if a great number of 
crossing points is involved in large-amplitude nucle- 
ar collective motion, they can have a great effect 
giving a significant contribution to the excitation 
energy due to non-adiabacity of the motion. It is 
also important to note that the independence of 
transitions at successive crossing points, being one of 
the basic assumptions of different "hopping models", 
is often violated (see Sect. 4). 

2. The Two-Level Crossing Problem 

The most general single-particle hamiltonian for a 
two-level fermion system can be written in terms of 
a fictitious 1/2 spin 

H =  ~ e ,~ ,a~  am,=G+??o+C~(e-ie'~+ +eiOf ), (1) 
m, m' 

where G= 1/2 ~ e,,,~ represents the average energy of 
m 

the levels (in further considerations we put it equal 
to zero because it affects only a shift of the energy 
spectrum); y=  ~ sgn(m)e,,m stands for the energy dif- 

m 
ference of the levels, and a coupling between the 
levels is described by 

cSe -~ ~=e~_~=(~ ~)* with c5=>0 and q0~[0,2n[. 

+ and % are fermion creation and The operators am 
A ^ 

annihilation operators, respectively�9 to, r+ and f 
are defined in the form 

_ 1  + a =a+ a ~) Q = ( ? ) + = a + a  -c o - % _ _  (2)  

and stand for the generators of the fictitious SU(2) 
spin�9 Using the fictitious-spin formalism we want to 
underline the transformation properties of the two- 
level system; all possible continuous unitary transfor- 
mations can be understood as rotations in the ficti- 
tious-spin space. We suppose the hamiltonian (1) to 
be a linear function of only one collective variable cq 

[-5, 6] whereby 

?(a)=bcq b=const.  (3) 

and the coupling terms 6 and q5 are independent of 
the deformation parameter e. In addition we assume 
uniform collective motion with constant velocity 

1 
a = ~ t = ~  ut, u=  const. 4=0. (4) 

This is a rather weak condition since the overall 
process can always be divided into small intervals 
between subsequent crossings. The above conditions 
then have to be satisfied only piecewise in each of 
the subsequent intervals. The physical meaning of b 
is the difference of the slopes of the two intersecting 
levels. With these assumptions we can solve the 
Schr6dinger equation for the system (h = 1) 

iu ~ [~t(0r = H(c 0 [~(~)) (5) 

where the total wave function 

[t)(e)> = c, (~)1�89 + c+ (a) 1-�89 (6) 

and 

+ =a• (7) 

define a deformation-independent basis. The general 
solution of (5) with the initial amplitudes at a defor- 
mation % denoted by c~ and c~ can be written in 
the form 

c, (G ; x o, x ) =  K -  l(Go; x o, Xo) 

�9 M K ( G ;  Xo, Xo, x)}, 

c + (G ; Xo, x ) =  K -  l (Go; x o, Xo) 

�9 Xo ,  K * ( G ;  Xo ,  (S)  

where 

K ( G  o ; x o, x)--] /2 [(E(f)(Xo)) * E~)(x) 

-}- 4 ~ 0 1  (E(1)(X0))* E(1)(x)] 

e t2- 

- e T ( X o )  

The complex diabacity parameter G is defined by 
(bu>O) 

~ / ~ b u  ~ - -  irp 
G - - e  i~ ]/ 2 - 6 z = l /  G~ n " (9) 
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Furthermore we have defined 

i 1 and x o=e  ~ ~ u 7 ~  (10) 
# -27zG o 

The functions E~ ~ and E~ *) are combinations of the 
standard parabolic cylinder functions [12, 15]: 

E~~ 2- ~ -  (D~(z) + D~(- z)), r 

E(~l)(z)- 1/7 2 ~-(D,(z)-D~(-z)). 

(11) 

Note that the amplitudes c, and c+ are functions of 
b, ~, u, c~ and e0 only through the combinations G, x o 
and x. To complete the solution of (5), we quote the 
result for the limiting case of two parallel energy 
levels (b=0) coupled by a nonzero nondiagonal 
term, ~>0:  

c~(o; ~o, oO=c? cos [co(~-C~o)] 

+ c~ e-'(~~ ) sin [o~(a - % ) ] ,  

c+(co; ~o, ~)=c~ cos [~o(c~- ~o)] 

+ c~ ei6'-@ ) sin [co(c~ - %)] 

where 

(12) 

co= ! .  (12a) 

is a typical spatial frequency of quantum beats in 
the system. 

/((~0,Xo, x) 2 
./(Co; Xo, x)= K(G0 ; x0, x~ ) . (14) 

Applying the transformation properties of the ampli- 
tudes c~ and c a, which are the components of a 
spherical tensor of rank 1/2 and transform according 
to the two-dimensional irreducible representation 
D (l/z) of SU(2), we can easily find an expression for 
the transition probability between the adiabatic 
states (eigenstates J+_)) of this two-level system: 

JA(G; Xo, x)= [c+ (G; x0, x)l 2 

1 1 /  ~: 
= 2 - V 1 ~ 7  (�89 Ic~ (c; Xo, x)l ~) 

1 + ~ R e { c , ( G ; X o , X ) C l ( G ; X o , X ) e  i~o}, (15) 

where 

7Z 
tc=~ Ix[ 2 G o. 

The initial diabatic amplitudes are given by the 
equations 

c ~ = c o s ~  and c~=-e-i~sinO~~ (16) 

Here 4~ is defined by the hamiltonian (1) and 0 is the 
angle of rotation between dia- and adiabatic bases" 

s in0= [1 +~c] -~, 
tr �89 

cos 0 = sgn (Re (x)) [1-~x ] , (17) 

where 

0<0<Tz. 

3. The Transition Probability 

The probability of a transition having taken place 
between two states at a deformation e > 0  is defined 
as the occupation probability of the upper level cal- 
culated with the condition that for the initial defor- 
mation % < 0  (before the crossing point) only the 
lower level is occupied. For example the transition 
probability between the diabatic states (7) can be 
evidently written 

J(G; x o, x)= Ic~ (G; Xo, x)l 2, (13) 

where c,(G, xo, X ) is calculated from (11) with the 
initial conditions Ic~l=l and leVI=0 for a fixed val- 
ue of the collective variable. A little algebra gives 
the explicit form for the expression (13): 

The value 0 = 0 is related to 7 = + c~ and 0 = 7z corre- 
sponds to 7 = -oo .  
A typical behaviour of the transition probabilities J 
and JA as functions of the parameter x for a fixed x o 
and G is shown in the Fig. 1. This example demon- 
strates how the transition probability is strongly re- 
lated to the basis which one uses for calculations. 
For instance, in the DDD-approach I-3, 4, 14] it 
must be carefully distinguished if the adiabatic or 
the diabatic basis is used. Note that in Fig. 1, J and 
Ja are plotted in two different scales. 

4. A Geometrical Interpretation 
of the Two-Intersecting-Levels System 

In Sect. 2, the hamiltonian of the two-level system 
has been introduced in terms of fictitious spin-l/2 
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J Ixol = 0.1 JA 
13 o = 0.1 

1.0 ~ - - -  0.020 
08 / /~ ,~  " , \ \ ~ /  , 0.016 
0.6 01012 
0.4 0.008 
0.2 ~\ / ~  , / v ,~, 0.00/+ 
0 "IJ , i 1 0 

0 1 2 3 4 
Ixl 

Fig. 1. Typical behaviour of the diabatic (dashed line) and adia- 
batic (solid line) transition probabilities, in the vicinity of crossing 
point, as functions of the "deformation" parameter Ixl (Ix0l=0.1 
and G0=0.1 ). Note, that the figure is plotted in two different 
scales 

de 1 d Q  2h P~" (23) 
d-7=2 P" dt  - 

The occupation probabilities of the diabatic states 
are closely related to the z-component of the polar- 
ization vector 

Ic,12- Tr (1�89 <�89 ~3) = �89 +P0 

and 

Ic,12=�89 - P 0  (24) 

For the occupation probabilities of the eigenstates 
we get, respectively, 

operators. The parameters of the hamiltonian can 
also be interpreted as three components of a fic- 
titious magnetic field 

Q = 2 6  cos ~o%+2c5 sin q~ey+#ez, (18) 

where %,y,= are the unit cartesian vectors, and 
= bu = const. The field Q corresponds to the realistic 
magnetic field B by the obvious relation Q = - g B ,  
where g is the gyromagnetic ratio�9 The hamiltonian 
(1) can now be written as the scalar product of the 
Q-field and the spin vector operator 

H =  Q.z ,  (es=0). (19) 

The most general form of the density operator for 
the spin 1/2 is well known and can be written 

p =�89 + p.  ~. (20) 

In this expression the identity operator is denoted 
by 1 and the polarization vector P, which may be 
said to point in the direction of the spin, is defined 
by its components 

P~=2 Re(c~ c~), 

Py = 2 Jm(c~ c+), (21) 

P~=Ic t l2 -1cs l  2. 

The vector P satisfies the following equation of mo- 
tion I-173 : 

dP Q x P  h ~ - =  . (22) 

The system in question is completely described by 
the magnetic field and the polarization vector. For 
instance, the total energy and its time derivative are 
given by two simple equations 

e = � 8 9  

and 

ic+l z 1/1 P'Q\  

and (25) 

]C 12=-1 ( 1 - P ' Q t  
- 2 \ IQI ]�9 

In this geometrical picture, the angles 0 and 6 in- 
troduced by the Eqs. (1) and (17) are simply the 
polar angles of the direction of the field Q and are 
determined by the equations 

0(t)= arctg ( ~ ) ,  0<0_<Tr (26) 

and 

Qx+iQ = ] / Q ~ + Q  2 e ir176 0=< (p =<2~z. 

Assume now that for an initial value of time t o the 
polarization vector points in the positive direction of 
the z-axis. It corresponds to the initial conditions 
needed for calculation of the transition probability 
between two diabatic states (7). Then the probability 
of a jump is related to the projection of the polariza- 
tion vector according to (24). 
If the field Q is changing from its initial value to the 
final one very quickly, the vector P practically is still 
at the same position during the whole process, i.e. 
the particle stays on the diabatic level for very fast 
collective motion. For a slowly varying magnetic 
field, the polarization vector can follow the field, but 
because of the finite angle between P and Q a Lar- 
mor-like precession is observed giving strong oscil- 
lations of the transition probability in a narrow re- 
gion near the x y  plane, e.g. at the vicinity of the 
crossing point. The Landau-Zener limit corresponds 
to taking the initial and final times equal to - o o  
and + 0% respectively. In this case no oscillation can 
be found because all oscillations are strongly 
damped for t--+ ___ oo. The same analysis can be made 
using (25) for the transition probability between ei- 
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0.4 F- 3A too* 

0.2 

0.2 0.#, 0.6 0.8 1.0 1.2 1A U 

Fig. 2. Typical behaviour of the diabatic (solid line) and adiabatic 
(dashed line) transition probabilities as functions of the collective 
v e l o c i t y u ( - % = % = l f m ,  b = l M e V . f m  1, 5 = 0 . 5 M e V ,  u=h.c~ 
MeV. fin) 

Table 1. Limiting values (for infinite collective velocity u) of the 
adiabatic transition probabilities for the symmetric case, Ic%l=c~ 
=Ac~ 

dc~ [fm] b [  MeV]  5 [MeV] JAmax=[ K 
[ fm ] +~  

0.25 1 0.25 0.2 
1 1 0.25 0.8 
0.25 1 0.5 0.06 
2 1 0.5 0.8 
0.25 1 0.75 0.03 
2 1 0.75 0.64 
0.25 3 0.5 0.36 
0.75 3 0.5 0.83 

genstates. The initial position of the polarization 
vector is, however, different from that for the dia- 
batic states. Initially the magnetic field Q and the 
polarization vector P are acutally parallel vectors. 
For  an extremely slowly varying magnetic field Q 
the polarization vector P follows the field and is 
practically parallel to it. It corresponds to the case 
when a particle moves along the lower eigenstate - 
the adiabatic case. For  a finite velocity the descrip- 
tion is more complicated because of the Larmor-like 
precession. It is always present and leads to large 
amplitude oscillations in the diabatic transition 
probability. 
In the adiabatic case, with parameters appropriate 
for fission reactions of heavy nuclei, these oscil- 
lations are relatively small. However, we would like 
to emphasize once more that these two cases cannot 
be compared as far as a small neighbourhood of the 
crossing point is concerned. They correspond to 
completely different initial conditions. The oscil- 
latory behaviour of the diabatic transition probabili- 
ty can be studied by making use of the exact so- 
lutions (8) of the SchrSdinger equation (5). In Fig. 2, 
both adiabatic and diabatic transition probabilities 
are plotted as functions of the collective velocity u. 
The remaining parameters are fixed. Three charac- 
teristic features are observed: 
i) The frequency of the diabatic transition probabil- 
ity is a strongly decreasing function of the collective 
velocity. 
ii) There exists a specific value of the collective 
velocity, u c, which corresponds to the last minimum 
of the diabatic transition probability. If the collec- 
tive velocity is higher than uc, the probability of a 
jump becomes a monotonously increasing function 
of u. 
iii) The adiabatic transition probability, JA, is 
bounded by the number � 8 9  }__<1, when 
U ----~ O0. 

In Table 1 the maximal value (i.e. for infinite col- 

lective velocity) of the adiabatic transition probabili- 
ty is given as a function of distance from the cross- 
ing point. This '"saturation" property is in contradic- 
tion with the analysis of different dynamical nuclear 
models as a function of the diabacity parameter and 
the time of local equilibration only [3, 4 I. 
The application of the Landau-Zener infinite inter- 
val approximation for the case of successive cross- 
ings is therefore dangerous. The above saturation 
property of the adiabatic jumping probability in a 
finite interval shows that there can be considerable 
contributions to the transition probability at large 
distances from the crossing point. Therefore, if the 
average length of intervals between successive cross- 
ings is such that JA is appreciably smaller than unity 
in one interval, there must be a strong dynamical 
influence of the "'tail" of the foregoing crossings on 
what happens at a particular one. This means, of 
course, that there is a strong interdependence of 
transitions at successive crossings. Consequently, the 
problem can not be reduced to a series of inde- 
pendent crossings where the situation at the end of 
the n-th inverval serves only to define the initial 
conditions for the (n + 1)-th interval. 

5. Adiabatic Cranking and the Excitation Energy 

In the light of the picture obtained in the previous 
sections a comment on the adiabatic cranking model 
[18] widely used in nuclear physics is in place. In 
this section we compare the total excitation energy 
of the two-level system given by the exact formula 
(27) and that calculated in a conventional way with 
the Inglis mass parameter (28). The total excitation 
energy is obviously related to the adiabatic tran- 
sition probability JA- For  given initial and final de- 
formations ~0 and e, respectively, and for arbitrary 
parameters b, 5 and u, the excitation energy can be 
expressed as 
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E* = ] / b  2 e2+452 da(G; Xo, x). (27) 

Because the transition probability JA depends not 
only on the actual deformation c~ but also on the 
initial one %, the excitation energy depends on the 
"history" of the particle motion. On the other hand, 
the appropriate mass parameter calculated from the 
Inglis formula is given by the simple expression 

b 2 5 2 

B(~, b, 6 )=2h  2 [b 2 0~2 1_45215/2, (28) 

where no dependence on the initial state is con- 
tained. In addition, for a fixed difference of slopes b 
the mass parameter (28) treated as a function of the 
deformation c~ and of the coupling parameter 6 
(which corresponds to a linearized or diagonalized 
residual interaction) exhibits a discontinuity at the 
point ~ = 5 = 0 .  To see that this behaviour is un- 
physical it is enough to calculate two limits: 

lim limB(c~, b, 5)= o% 
6 ~ 0  c ~ O  

lim limB(c~, b, 5)=0. (29) 
a~O 6~0 

The former indicates that at the crossing point a 
very small interaction 5 produces a large spike in 
the mass parameter, the latter shows that if the 
interaction 6 is being switched off first, the Inglis 
mass parameter at the crossing point becomes negli- 
gible. It is obvious that this strange feature is an 
unphysical effect caused by the adiabatic approxima- 
tion [10]. The importance of non-adiabatic effects 
due to the possibility of a jump of a particle between 
two single-particle levels is exhibited in Fig. 3. There 
the excitation energy E* and Ec=�89 2 are plotted 
as functions of the deformation parameter a. The 
typical collective velocity in a fission process be- 
tween the saddle and scission point is of the order 

1020 10z 1 __fro (corresponding to u~0.1-1 Me.  fm). It 
s 

is seen from Fig. 3 that in this range of collective 
velocities the behaviour of E* and E c differs even 
qualitatively. For  much smaller collective velocity, 
u~0.01, E* becomes an oscillating function behav- 
ing approximately as a combination of sin 2 c0c~ and 
cos 2 coc~ functions, where co is the frequency of quan- 
tum beats (12a), as is shown in Fig. 3b. Even in this 
case of very small collective velocity the average of 
E* is nearly 4 times larger than the cranking model 
prediction. The same features are seen in Figs. 3c 
and 3d where a different slope parameter has been 
used. From the results one can see that the adiabatic 
cranking formula describes only a part of the total 
excitation energy for very slow collective motion, 

0.2 
(MeV) 

>_ 0.1 

""  0 z 
i j j  

1.5 
_o z (keV) 

~_ 1.0 

0.5 

0 0.2 ~ O/+[fm)0.6 0 0.1 or. O2[fm)03 

a _ b _ 0.12 
. . . .  " " "  (keY) 

0.08 

0.04 

' 0 

c d 0.3 

"- 01 

0.10t 0.2 0.3{fro) 0 0.10t 0.2(fro) 0.3 

Fig. 3a-d .  Plots of the exact excitation energy E* (solid line) and 
the one predicted by the cranking formula (dashed line) versus the 
deformation parameter c~ with fixed %=0 .1  fm and 6=0.5  MeV. 
The values of the other parameters are: a b = l ,  u = l ;  b b = l ,  u 
=0.01; e b=5 ,  u=0.01 and d b=5 ,  u=0.1  in M e V . f m  1 and 
MeV.  fm for b and u respectively 

even if the transition probabilities are much smaller 
than one (typically u=0.01-0.1 MeVfm). On the 
other hand, for higher collective velocity, e.g. u ~ l ,  
the excitation energy can also be overestimated by 
the Inglis formula (28) (see Fig. 3 a). 
Obviously, from our simple two-level model one can 
not draw quantitative conclusions; but it is reason- 
able to expect that taking into account more levels 
will even worsen the situation as far as the validity 
of the cranking model is concerned, because interfer- 
ence effects between neighbouring crossing points 
can become quite important. 

5. Conclusions 

We have derived a general expression for the jump- 
ing probability between two intersecting levels; the 
diabatic levels were assumed to be straight lines and 
the collective velocity was assumed to be constant. 
The treatment is not restricted to the limiting case 
where the jumping probability is calculated between 
initial and final configurations which are reached for 
t~-T-oe respectively, as it is the case for the Lan- 
dau-Zener approximation. In our treatment the time 
interval during which the jumping takes place can 
take on any value and must not necessarily be sym- 
metric a ro u n d  the time of crossing. Therefore the 
restrictions to straight diabatic lines and constant 
velocity are practically not stringent; indeed for re- 
alistic molecular or nuclear systems one always has 
to do with many subsequent level crossings so that a 
natural division into subsequent sections with rather 
short intervals is imposed. For these separate in- 
tervals the assumption of constant slopes and veloci- 
ty are less restrictive than for the entire motion 
between t = =4-oo. 
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The jumping probability depends on the two param- 

bu ~u 
eters G o = - -  and Ixl= Ic~1 defined in (9) and 2n3 2 

(10). The LZ approximation corresponds to the 
limiting case [el--+oe; i.e. Ix [~oe  so that only the 
dependence on G o remains. For finite values of e the 
dependence of the results on Ix[ is quite important. 
Moreover a discussion within the LZ-approximation 
where the slope b and the level coupling 6 is kept 
constant and only the velocity u is varied, can be 
quite misleading since ]xL varies at the same time. A 
variation of G o while Ix[ is kept constant means 
apparently a variation of the coupling 6 only! An 
interesting peculiarity is obtained in connection with 
the jumping between diabatic levels near the cross- 
ing point. In this case the fact that the diabatic 
states are not eigenstates of the intrinsic hamiltonian 
imposes a time evolution which just reflects the de- 
pendence of the expansion coefficients of the dia- 
batic states in terms of the eigenstates. Therefore, 
even if there is no jumping between the eigenstates, 
both diabatic levels will be occupied at the crossing 
point with equal probabilities, and with comparable 
probabilities in the vicinity of the crossing point. 
There is an evident limitation of our treatment 
which is related to the two-level approximation. As 
we have explained above," we have to divide the 
process into subsequent time intervals, the lengths of 
which are given by the separations A c~ between sub- 
sequent (avoided) crossings and the average velocity 

Ae 
between the crossing points, namely by A t = - - .  

On the other hand, by the uncertainty principle this 
h h~ 

corresponds to an energy interval E At Ae which 

should be small enough to contain only the pair of 
intersecting levels in question. If more levels are 
found within A E, the two level approximation will 
be unreliable. 
We have used our results for the transition probabil- 
ities to calculate the excitation energy within the 
two-level model and compared it to the cranking 
model. It turns out that the results of the two ap- 
proaches differ in many cases even qualitatively. The 
results of the "exact" model depend much more 
sensitively on the parameters than those of the 
cranking model; in particular the cranking model 
can obviously not reproduce the oscillations which 
are found in the "exact" calculation. Even after 
averaging over the oscillations there still remain 
large discrepancies. This seems to be in contradic- 
tion to the generally accepted view that cranking 
works well for small collective velocities. However, 
this conclusion cannot be drawn since the limit 

where the collective velocity tends to zero does not 
exist - as is well known [10]. Apparently for the 
range of velocities investigated here - assumed to be 
typical for fission processes - the cranking results 
does not yet tend towards the average of the exact 
result. 
Our present conclusions are limited by the fact that 
our model is very simple and does, in particular, not 
allow to separate collective and intrinsic motion. 
Nevertheless we have demonstrated that the results 
of an exact dynamical calculation can be extremely 
sensitive to the chosen boundary conditions and pa- 
rameters of the model. It must be the object of 
further studies how this conclusion may eventually 
be altered by the presence of many levels and their 
interdependences. 
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