118 research outputs found

    Multicenter data acquisition made easy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process for data collection in multicenter trials may be troublesome and expensive. We report our experience with the spreadsheet function in Googledocs for this purpose.</p> <p>Methods</p> <p>In Googledocs the data manager creates a form similar to the paper case record form, which will function as a decentral data entry module. When the forms are submitted, they are presented in a spreadsheet in Googledocs, which can be exported to different standard spreadsheet formats.</p> <p>Results</p> <p>For a multicenter randomized clinical trial with five different participating hospitals we created a decentral data entry module using the spreadsheet function in Googledocs. The study comprised 332 patients (clinicaltrials.gov identifier: NCT00815698) with five visits per patient. One person at each study site entered data from the original paper based case report forms which were kept at the study sites as originals. We did not experience any technical problems using the system.</p> <p>Conclusions</p> <p>The system allowed for decentral data entry, and it was easy to use, safe, and free of charge. The spreadsheet function in Googledocs may potentially replace current expensive solutions for data acquisition in multicenter trials.</p> <p>Trial registration</p> <p>clinicaltrials.gov NCT00815698</p

    Investigating the Electromechanical Behavior of Unconventionally Ferroelectric Hf0.5Zr0.5O2-Based Capacitors Through Operando Nanobeam X-Ray Diffraction

    Get PDF
    Understanding various aspects of ferroelectricity in hafnia-based nanomaterials is of vital importance for the development of future nonvolatile memory and logic devices. Here, the unconventional and weak electromechanical response of epitaxial La0.67Sr0.33MnO3/Hf0.5Zr0.5O2/La0.67Sr0.33MnO3 ferroelectric capacitors is investigated, via the sensitivity offered by nanobeam X-ray diffraction experiments during application of electrical bias. It is shown that the pristine rhombohedral phase exhibits a linear piezoelectric effect with piezoelectric coefficient (|d33|) ≈ 0.5–0.8 pmV−1. It is found that the piezoelectric response is suppressed above the coercive voltage. For higher voltages, and with the onset of DC conductivity throughout the capacitor, a second-order effect is observed. The work sheds light into the electromechanical response of rhombohedral Hf0.5Zr0.5O2 and suggests its (un)correlation with ferroelectric switching

    Inducing ferroelastic domains in single crystal CsPbBr3 perovskite nanowires using atomic force microscopy

    Get PDF
    Ferroelectric and ferroelastic domains have been predicted to enhance metal halide perovskite MHP solar cell performance. While the formation of such domains can be modified by temperature, pressure, or strain, established methods lack spatial control at the level of single domains. Here, we induce the formation of ferroelastic domains in CsPbBr3 nanowires at room temperature using an atomic force microscope AFM tip and visualize the domains using nanofocused x ray diffraction with a 60 nm beam. Regions scanned with a low AFM tip force show orthorhombic 004 reflections along the nanowire axis, while regions exposed to higher forces exhibit 220 reflections. The applied stress locally changes the crystal structure, leading to lattice tilts that define ferroelastic domains, which spread spatially and terminate at 112 type domain walls. The ability to induce individual ferroelastic domains within MHPs using AFM gives new possibilities for device design and fundamental experimental studie

    Scalable In Situ Hybridization on Tissue Arrays for Validation of Novel Cancer and Tissue-Specific Biomarkers

    Get PDF
    Tissue localization of gene expression is increasingly important for accurate interpretation of large scale datasets from expression and mutational analyses. To this end, we have (1) developed a robust and scalable procedure for generation of mRNA hybridization probes, providing >95% first-pass success rate in probe generation to any human target gene and (2) adopted an automated staining procedure for analyses of formalin-fixed paraffin-embedded tissues and tissue microarrays. The in situ mRNA and protein expression patterns for genes with known as well as unknown tissue expression patterns were analyzed in normal and malignant tissues to assess procedure specificity and whether in situ hybridization can be used for validating novel antibodies. We demonstrate concordance between in situ transcript and protein expression patterns of the well-known pathology biomarkers KRT17, CHGA, MKI67, PECAM1 and VIL1, and provide independent validation for novel antibodies to the biomarkers BRD1, EZH2, JUP and SATB2. The present study provides a foundation for comprehensive in situ gene set or transcriptome analyses of human normal and tumor tissues
    corecore