957 research outputs found

    Comprehensive Observations of a Solar Minimum CME with STEREO

    Full text link
    We perform the first kinematic analysis of a CME observed by both imaging and in situ instruments on board STEREO, namely the SECCHI, PLASTIC, and IMPACT experiments. Launched on 2008 February 4, the CME is tracked continuously from initiation to 1 AU using the SECCHI imagers on both STEREO spacecraft, and is then detected by the PLASTIC and IMPACT particle and field detectors on board STEREO-B. The CME is also detected in situ by ACE and SOHO/CELIAS at Earth's L1 Lagrangian point. The CME hits STEREO-B, ACE, and SOHO on 2008 February 7, but misses STEREO-A entirely. This event provides a good example of just how different the same event can look when viewed from different perspectives. We also demonstrate many ways in which the comprehensive and continuous coverage of this CME by STEREO improves confidence in our assessment of its kinematic behavior, with potential ramifications for space weather forecasting. The observations provide several lines of evidence in favor of the observable part of the CME being narrow in angular extent, a determination crucial for deciding how best to convert observed CME elongation angles from Sun-center to actual Sun-center distances.Comment: 27 pages, 10 figures, AASTEX v5.2, accepted by Ap

    An Analysis of the Shapes of Interstellar Extinction Curves. VI. The Near-IR Extinction Law

    Full text link
    We combine new HST/ACS observations and existing data to investigate the wavelength dependence of NIR extinction. Previous studies suggest a power-law form, with a "universal" value of the exponent, although some recent observations indicate that significant sight line-to-sight line variability may exist. We show that a power-law model provides an excellent fit to most NIR extinction curves, but that the value of the power, beta, varies significantly from sight line-to-sight line. Therefore, it seems that a "universal NIR extinction law" is not possible. Instead, we find that as beta decreases, R(V) [=A(V)/E(B-V)] tends to increase, suggesting that NIR extinction curves which have been considered "peculiar" may, in fact, be typical for different R(V) values. We show that the power law parameters can depend on the wavelength interval used to derive them, with the beta increasing as longer wavelengths are included. This result implies that extrapolating power law fits to determine R(V) is unreliable. To avoid this problem, we adopt a different functional form for NIR extinction. This new form mimics a power law whose exponent increases with wavelength, has only 2 free parameters, can fit all of our curves over a longer wavelength baseline and to higher precision, and produces R(V) values which are consistent with independent estimates and commonly used methods for estimating R(V). Furthermore, unlike the power law model, it gives R(V)'s that are independent of the wavelength interval used to derive them. It also suggests that the relation R(V) = -1.36 E(K-V)/E(B-V) - 0.79 can estimate R(V) to +/-0.12. Finally, we use model extinction curves to show that our extinction curves are in accord with theoretical expectations.Comment: To appear in the Astrophysical Journa

    Lifetime Measurement of the 6s Level of Rubidium

    Full text link
    We present a lifetime measurements of the 6s level of rubidium. We use a time-correlated single-photon counting technique on two different samples of rubidium atoms. A vapor cell with variable rubidium density and a sample of atoms confined and cooled in a magneto-optical trap. The 5P_{1/2} level serves as the resonant intermediate step for the two step excitation to the 6s level. We detect the decay of the 6s level through the cascade fluorescence of the 5P_{3/2} level at 780 nm. The two samples have different systematic effects, but we obtain consistent results that averaged give a lifetime of 45.57 +- 0.17 ns.Comment: 10 pages, 9 figure

    A Coronal Hole's Effects on CME Shock Morphology in the Inner Heliosphere

    Full text link
    We use STEREO imagery to study the morphology of a shock driven by a fast coronal mass ejection (CME) launched from the Sun on 2011 March 7. The source region of the CME is located just to the east of a coronal hole. The CME ejecta is deflected away from the hole, in contrast with the shock, which readily expands into the fast outflow from the coronal hole. The result is a CME with ejecta not well centered within the shock surrounding it. The shock shape inferred from the imaging is compared with in situ data at 1 AU, where the shock is observed near Earth by the Wind spacecraft, and at STEREO-A. Shock normals computed from the in situ data are consistent with the shock morphology inferred from imaging.Comment: to appear in The Astrophysical Journa

    Measurement of the temperature of an ultracold ion source using time-dependent electric fields

    Get PDF
    We report on a measurement of the characteristic temperature of an ultracold rubidium ion source, in which a cloud of laser-cooled atoms is converted to ions by photo-ionization. Extracted ion pulses are focused on a detector with a pulsed-field technique. The resulting experimental spot sizes are compared to particle-tracking simulations, from which a source temperature T=(1±2)T = (1 \pm 2) mK and the corresponding transversal reduced emittance ϵr=7.9X109\epsilon_r = 7.9 X 10^{-9} m rad eV\sqrt{\rm{eV}} are determined. We find that this result is likely limited by space charge forces even though the average number of ions per bunch is 0.022.Comment: 8 pages, 11 figure

    Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations

    Full text link
    Effective Casimir forces induced by thermal fluctuations in the vicinity of bulk critical points are studied by means of Monte Carlo simulations in three-dimensional systems for film geometries and within the experimentally relevant Ising and XY universality classes. Several surface universality classes of the confining surfaces are considered, some of which are relevant for recent experiments. A novel approach introduced previously EPL 80, 60009 (2007), based inter alia on an integration scheme of free energy differences, is utilized to compute the universal scaling functions of the critical Casimir forces in the critical range of temperatures above and below the bulk critical temperature. The resulting predictions are compared with corresponding experimental data for wetting films of fluids and with available theoretical results.Comment: 21 pages, 17 figure

    Clinical Practice Guidelines on the Diagnosis and Management of Polycystic Ovary Syndrome: A Systematic Review and Quality Assessment Study

    Get PDF
    CONTEXT: Clinical practice guidelines (CPGs) are key instruments to implement the practice of evidence-based medicine. We aimed to evaluate the methodological quality and variations in CPGs recommendations on the diagnosis and management of polycystic ovary syndrome (PCOS). EVIDENCE ACQUISITION: We searched MEDLINE, EMBASE, and CENTRAL until December 2020 for all evidence-based CPGs and consensus statements on PCOS. We extracted data in duplicate to map clinical recommendations across prespecified disease domains and assessed CPGs methodological quality of using the Appraisal of Guidelines, Research & Evaluation II tool. EVIDENCE SYNTHESIS: We included 13 PCOS CPGs published between 2007 and 2018. CPGs recommendations were mostly focused on screening for and managing metabolic disease (12/13, 92%), followed by cardiovascular risk assessment (10/13, 77%). Mental health (8/13, 62%) and diagnosis in adolescents (7/13, 54%) were the least reported domains. Most CPGs had a high quality for scope and purpose description (12/13, 92%) while stakeholder's involvement and applicability of recommendations to clinical practice were appropriate in only 2 CPGs (2/13, 15%). We identified inconsistency in recommendations on PCOS diagnosis in adolescents, optimal lifestyle interventions, hirsutism and acne treatments, interventions to reduce the risk of ovarian hyperstimulation syndrome, the frequency and screening criteria for metabolic and cardiovascular disease, and optimal screening tools for mental health illness in women with PCOS. CONCLUSION: Current CPGs on the diagnosis and management of PCOS vary in their scope and methodological quality, which may hinder evidence translation into clinical practice. We identified disease domains with existing evidence gap to guide future research and guideline updates

    Atomic-scale surface demixing in a eutectic liquid BiSn alloy

    Full text link
    Resonant x-ray reflectivity of the surface of the liquid phase of the Bi43_{43}Sn57_{57} eutectic alloy reveals atomic-scale demixing extending over three near-surface atomic layers. Due to the absence of underlying atomic lattice which typically defines adsorption in crystalline alloys, studies of adsorption in liquid alloys provide unique insight on interatomic interactions at the surface. The observed composition modulation could be accounted for quantitatively by the Defay-Prigogine and Strohl-King multilayer extensions of the single-layer Gibbs model, revealing a near-surface domination of the attractive Bi-Sn interaction over the entropy.Comment: 4 pages (two-column), 3 figures, 1 table; Added a figure, updated references, discussion; accepted at Phys. Rev. Let

    Multi-fractional analysis of molecular diffusion in polymer multilayers by FRAP: a new simulation-based approach

    Get PDF
    Comprehensive analysis of the multifractional molecular diffusion provides a deeper understanding of the diffusion phenomenon in the fields of material science, molecular and cell biology, advanced biomaterials, etc. Fluorescence recovery after photobleaching (FRAP) is commonly employed to probe the molecular diffusion. Despite FRAP being a very popular method, it is not easy to assess multifractional molecular diffusion due to limited possibilities of approaches for analysis. Here we present a novel simulation-optimization-based approach (S-approach) that significantly broadens possibilities of the analysis. In the S-approach, possible fluorescence recovery scenarios are primarily simulated and afterward compared with a real measurement while optimizing parameters of a model until a sufficient match is achieved. This makes it possible to reveal multifractional molecular diffusion. Fluorescent latex particles of different size and fluorescein isothiocyanate in an aqueous medium were utilized as test systems. Finally, the S-approach has been used to evaluate diffusion of cytochrome c loaded into multilayers made of hyaluronan and polylysine. Software for evaluation of multifractional molecular diffusion by S-approach has been developed aiming to offer maximal versatility and user-friendly way for analysis
    corecore