11,276 research outputs found

    Common-reflection-surface imaging of shallow and ultrashallow reflectors

    Get PDF
    We analyzed the feasibility of the common-reflection-surface (CRS) stack for near-surface surveys as an alternative to the conventional common midpoint (CMP) stacking procedure. The data-driven, less user-interactive CRS method could be more cost efficient for shallow surveys, where the high sensitivity to velocity analysis makes data processing a critical step. We compared the results for two field data sets collected to image shallow and ultrashallow reflectors: an example of shallow Pwave reflection for targets in the first few hundred meters, and an example of SH-wave reflection for targets in the first 10 m. By processing the shallow P-wave records using the CMP method, we imaged several nearly horizontal reflectors with onsets from 60 to about 250 ms. The CRS stack produced a stacked section more suited for a subsurface interpretation, without any preliminary formal and time-consuming velocity analysis, because the imaged reflectors possessed greater coherency and lateral continuity. With CMP processing of the SHwave records, we imaged a dipping bedrock interface below four horizontal reflectors in unconsolidated, very low velocity sediments. The vertical and lateral resolution was very high, despite the very shallow depth: the image showed the pinchout of two layers at less than 10 m depth. The numerous traces used by the CRS stack improved the continuity of the shallowest reflector, but the deepest overburden reflectors appear unresolved, with not well-imaged pinchouts. Using the kinematic wavefield attributes determined for each stacking operation, we retrieved velocity fields fitting the stacking velocities we had estimated in the CMP processing. The use of CRS stack could be a significant step ahead to increase the acceptance of the seismic reflection method as a routine investigation method in shallow and ultrashallow seismics

    Convex Polytopes and Quasilattices from the Symplectic Viewpoint

    Get PDF
    We construct, for each convex polytope, possibly nonrational and nonsimple, a family of compact spaces that are stratified by quasifolds, i.e. each of these spaces is a collection of quasifolds glued together in an suitable way. A quasifold is a space locally modelled on Rk\R^k modulo the action of a discrete, possibly infinite, group. The way strata are glued to each other also involves the action of an (infinite) discrete group. Each stratified space is endowed with a symplectic structure and a moment mapping having the property that its image gives the original polytope back. These spaces may be viewed as a natural generalization of symplectic toric varieties to the nonrational setting.Comment: LaTeX, 29 pages. Revised version: TITLE changed, reorganization of notations and exposition, added remarks and reference

    Determination of Dark Matter Properties at High-Energy Colliders

    Full text link
    If the cosmic dark matter consists of weakly-interacting massive particles, these particles should be produced in reactions at the next generation of high-energy accelerators. Measurements at these accelerators can then be used to determine the microscopic properties of the dark matter. From this, we can predict the cosmic density, the annihilation cross sections, and the cross sections relevant to direct detection. In this paper, we present studies in supersymmetry models with neutralino dark matter that give quantitative estimates of the accuracy that can be expected. We show that these are well matched to the requirements of anticipated astrophysical observations of dark matter. The capabilities of the proposed International Linear Collider (ILC) are expected to play a particularly important role in this study.Comment: 124 pages, 62 figures; corrections and new material in Section 2.6 (direct detection); misc. additional correction

    Drug Reformulation Regulatory Gaming in Pharmaceuticals: Enforcement & Innovation Implications

    Get PDF
    This article examines drug reformulation regulatory gaming as a vehicle for analyzing the way in which European courts and the Commission are currently approaching innovation issues in the pharmaceutical sector. First, the economics literature regarding pharmaceutical innovation is briefly summarized. Next, the phenomenon of regulatory gaming is introduced, followed by an analysis of the two primary theories of harm being used to address drug reformulations as a competition concern. In comparing the recent General Court decision in AstraZeneca to earlier U.S. court cases addressing similar conduct, it is asserted that these approaches differ in significant ways with regards to preservation of innovation incentives as well as on the basis of institutional and evidentiary concerns. Finally, this discussion is then placed into the broader context of the ongoing debate regarding pharmaceutical innovation that first surfaced in the Syfait cases—in particular, the desirability of sector-specific competition law analysis of pharmaceutical innovation

    Gamma rays from ultracompact primordial dark matter minihalos

    Full text link
    Ultracompact minihalos have recently been proposed as a new class of dark matter structure. These minihalos would be produced by phase transitions in the early Universe or features in the inflaton potential, and constitute non-baryonic massive compact halo objects (MACHOs) today. We examine the prospect of detecting ultracompact minihalos in gamma-rays if dark matter consists of self-annihilating particles. We compute present-day fluxes from minihalos produced in the electron-positron annihilation epoch, and the QCD and electroweak phase transitions in the early Universe. Even at a distance of 100 pc, minihalos produced during the electron-positron annihilation epoch should be eminently detectable today, either by the Fermi satellite, current Air Cherenkov telescopes, or even in archival EGRET data. Within ~1 pc, minihalos formed in the QCD phase transition would have similar predicted fluxes to the dwarf spheroidal galaxies targeted by current indirect dark matter searches, so might also be detectable by present or upcoming experiments.Comment: 5 pages, 3 figures. Minor update to match published version of erratu

    Energy of the soul

    Get PDF
    Not Include

    Numerical simulations of chromospheric hard X-ray source sizes in solar flares

    Full text link
    X-ray observations are a powerful diagnostic tool for transport, acceleration, and heating of electrons in solar flares. Height and size measurements of X-ray footpoints sources can be used to determine the chromospheric density and constrain the parameters of magnetic field convergence and electron pitch-angle evolution. We investigate the influence of the chromospheric density, magnetic mirroring and collisional pitch-angle scattering on the size of X-ray sources. The time-independent Fokker-Planck equation for electron transport is solved numerically and analytically to find the electron distribution as a function of height above the photosphere. From this distribution, the expected X-ray flux as a function of height, its peak height and full width at half maximum are calculated and compared with RHESSI observations. A purely instrumental explanation for the observed source size was ruled out by using simulated RHESSI images. We find that magnetic mirroring and collisional pitch-angle scattering tend to change the electron flux such that electrons are stopped higher in the atmosphere compared with the simple case with collisional energy loss only. However, the resulting X-ray flux is dominated by the density structure in the chromosphere and only marginal increases in source width are found. Very high loop densities (>10^{11} cm^{-3}) could explain the observed sizes at higher energies, but are unrealistic and would result in no footpoint emission below about 40 keV, contrary to observations. We conclude that within a monolithic density model the vertical sizes are given mostly by the density scale-height and are predicted smaller than the RHESSI results show.Comment: 19 pages, 9 figures, accepted for publication in Ap

    The Symplectic Penrose Kite

    Get PDF
    The purpose of this article is to view the Penrose kite from the perspective of symplectic geometry.Comment: 24 pages, 7 figures, minor changes in last version, to appear in Comm. Math. Phys
    • …
    corecore