3,980 research outputs found
Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters
Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed
The Indiana University Student Outreach Clinic as a Substrate for Interprofessional Education: A Physical Therapy Perspective
poster abstractPurpose
The World Health Organization defines Inter-Professional Education (IPE) as “two or more professions learning about, from and with each other to enable effective collaboration &improve health outcomes.” IPE is being stressed in education to prepare students for Inter-Professional Care (IPC). IPC occurs when multiple health workers from different professional backgrounds provide comprehensive health services. Our purpose is to discuss the Indiana University Student Outreach Clinic (IU-SOC) as an exemplar in IPE/IPC in preparing PT students for clinical practice.
Description
The IU-SOC has implemented IPE/IPC by collaborating with partners from the schools of medicine, pharmacy, law, social work, dentistry, and most recently, physical therapy. Student leaders collaborate to provide comprehensive patient care. Different committees are in place to facilitate communication between disciplines. One PT student is designated in the IPE role to assist other partners in determining if a patient is appropriate for PT. This model has allowed PT to communicate reciprocally with medicine to ensure best patient care.
Summary of Use
IU-SOC is unique because it is a student-run pro bono clinic where teaching IPE/IPC is a primary purpose. Students benefit from this model by learning the importance of communication between disciplines early in their education to better prepare for IPC; making them more likely to utilize it during clinical practice. The community has increased access to services and is utilizing healthcare resources more efficiently, with less reliance on emergency services. Occupational Therapy is anticipated to join rehab services in the near future.
Importance to Members
IPC helps to sustain the health care system, improve outcomes, enhance organizational efficiency, and provide more comprehensive care. IPC is the future of health care; the foundation of which must be established in education. Multi-disciplinary, student-led outreach clinics, such as IU-SOC, can serve as an IPE/IPC substrate to prepare PT students for practice
Exogenously added GPI-anchored tissue inhibitor of matrix metal loproteinase-1 (TIMP-1) displays enhanced and novel biological activities
The family of tissue inhibitors of metalloproteinases (TIMPs) exhibits diverse physiological/biological functions including the inhibition of active matrix metalloproteinases, regulation of proMMP activation, cell growth, and the modulation of angiogenesis. TIMP-1 is a secreted protein that can be detected on the cell surface through its interaction with surface proteins. The diverse biological functions of TIMP-1 are thought to lie, in part, in the kinetics of TIMP-1/MMP/surface protein interactions. Proteins anchored by glycoinositol phospholipids (GPIs), when purified and added to cells in vitro, are incorporated into their surface membranes. A GPI anchor was fused to TIMP-1 to generate a reagent that could be added directly to cell membranes and thus focus defined concentrations of TIMP-1 protein on any cell surface independent of protein-protein interaction. Unlike native TIMP-1, exogenously added GPI-anchored TIMP-1 protein effectively blocked release of MMP-2 and MMP-9 from osteosarcoma cells. TIMP-1-GP1 was a more effective modulator of migration and proliferation than TIMP-1. While control hTIMP-1 protein did not significantly affect migration of primary microvascular endothelial cells at the concentrations tested, the GPI-anchored TIMP-1 protein showed a pronounced suppression of endothelial cell migration in response to bFGF. In addition, TIMP-1-GPI was more effective at inducing microvascular endothelial proliferation. In contrast, fibroblast proliferation was suppressed by the agent. Reagents based on this method should assist in the dissection of the protease cascades and activities involved in TIMP biology. Membrane-fixed TIMP-1 may represent a more effective version of the protein for use in therapeutic expression
Recruiting and Retaining People with Disabilities for Qualitative Health Research: Challenges and Solutions
There are 56.7 million people with disabilities (PWD) living in the United States; yet, PWD are significantly underrepresented in health research. Even when researchers purposively seek to include PWD in studies, challenges emerge related to recruitment and retention, leading to inadequate representation and surface understandings of this population. This in turn contributes to the perpetuation of implicit and explicit health disparities that are already experienced by this population. Grounded within a qualitative, community-based participatory health research framework, we highlight challenges associated with recruiting and retaining PWD in health research, including a critical analysis of the research enterprise structure, how this disables accessible research practices for PWD, and leads to continued skepticism among PWD regarding the value of participating in research. Finally, we propose solutions to create and maintain a culture of access and inclusion as well as long-term collaborative and equity-focused partnerships
Subchronic Hepatotoxicity Evaluation of 2,3,4,6-Tetrachlorophenol in Sprague Dawley Rats
Male Sprague Dawley rats were exposed to 2,3,4,6-tetrachlorophenol (TCP) for 5 days, 2 weeks, 4 weeks, or 13 weeks. TCP was administered by gavage at doses of 0, 10, 25, 50, 100, or 200 mg/kg/day. Endpoints evaluated included clinical observations, body weights, liver weights, serum chemistry, blood TCP, gross pathology, and liver histopathology. There were no TCP exposure-related clinical signs of toxicity. Mean body weight decreased 12–22% compared to control in the 100 and 200 mg/kg/day groups. Serum ALT concentrations were increased in rats of the 200 mg/k/day. Liver weight increases were both dose- and exposure time-related and statistically significant at ≥25 mg/kg/day. Incidence and severity of centrilobular hepatocytic vacuolation, hepatocyte hypertrophy, and single cell hepatocytic necrosis were related to dose and exposure time. Following 13 weeks of exposure, bile duct hyperplasia and centrilobular and/or periportal fibrosis were observed in rats primarily of the highest TCP dose group. Blood TCP concentrations increased with dose and at 13 weeks ranged from 1.3 to 8.5 μg/mL (10 to 200 mg/kg/day). A NOAEL of 10 mg/kg/day was selected based on the statistically significant incidence of hepatocyte hypertrophy at doses ≥25 mg/kg/day
Distributed low voltage power supply system for front end electronics of the TRT detector in ATLAS experiment
We present a low voltage power supply system which has to deliver to the front end electronics of the ATLAS TRT detector [1] ca. 23 kW of electrical power over the distance of 55 -106 m (which adds another 24 kW). The system has to operate in magnetic field and under radiation environment of the LHC experimental cavern. The system has ~ 3000 individual channels which are all monitored and controlled (voltage and current measurement). The hardware solutions are described as well as the system control software
In a comfort zone and beyond—Ecological plasticity of key marine mediators
Copepods of the genus Calanus are the key components of zooplankton. Understanding their response to a changing climate is crucial to predict the functioning of future warmer high‐latitude ecosystems. Although specific Calanus species are morphologically very similar, they have different life strategies and roles in ecosystems. In this study, C. finmarchicus and C. glacialis were thoroughly studied with regard to their plasticity in morphology and ecology both in their preferred original water mass (Atlantic vs. Arctic side of the Polar Front) and in suboptimal conditions (due to, e.g., temperature, turbidity, and competition in Hornsund fjord). Our observations show that “at the same place and time,” both species can reach different sizes, take on different pigmentation, be in different states of population development, utilize different reproductive versus lipid accumulation strategies, and thrive on different foods. Size was proven to be a very mutable morphological trait, especially with regard to reduced length of C. glacialis. Both species exhibited pronounced red pigmentation when inhabiting their preferred water mass. In other domains, C. finmarchicus individuals tended to be paler than C. glacialis individuals. Gonad maturation and population development indicated mixed reproductive strategies, although a surprisingly similar population age structure of the two co‐occurring species in the fjord was observed. Lipid accumulation was high and not species‐specific, and its variability was due to diet differences of the populations. According to the stable isotope composition, both species had a more herbivorous diatom‐based diet in their original water masses. While the diet of C. glacialis was rather consistent among the domains studied, C. finmarchicus exhibited much higher variability in its feeding history (based on lipid composition). Our results show that the plasticity of both Calanus species is indeed impressive and may be regulated differently, depending on whether they live in their “comfort zone” or beyond it.publishedVersionUnit Licence Agreemen
Noncanonical Hydrogen Bonding In Nucleic Acids. Benchmark Evaluation Of Key Base-phosphate Interactions In Folded Rna Molecules Using Quantum-chemical Calculations And Molecular Dynamics Simulations
RNA molecules are stabilized by a wide range of non canonical interactions that are not present in DNA. Among them, the recently classified base phosphate (BPh) interactions belong to the most important ones. Twelve percent of nucleotides in the ribosomal crystal structures are involved in BPh interactions. BPh interactions are highly conserved and provide major constraints on RNA sequence evolution. Here we provide assessment of the energetics of BPh interactions using MP2 computations extrapolated to the complete basis set of atomic orbitals and corrected for higher-order electron correlation effects. The reference computations are compared with DFT-D and DFT-D3 approaches, the SAPT method, and the molecular mechanics force field. The computations, besides providing the basic benchmark for the BPh interactions, allow some refinements of the original classification, including identification of some potential doubly bonded BPh patterns. The reference computations are followed by analysis of some larger RNA fragments that consider the context of the BPh interactions. The computations demonstrate the complexity of interaction patterns utilizing the BPh interactions in real RNA structures. The BPh interactions are often involved in intricate interaction networks. We studied BPh interactions of protonated adenine that can contribute to catalysis of hairpin ribozyme, the key BPh interaction in the S-turn motif of the sarcin ricin loop, which may predetermine the S-turn topology and complex BPh patterns-from the glmS riboswitch. Finally, the structural stability of BPh interactions in explicit solvent molecular dynamics simulations is assessed. The simulations well preserve key BPh interactions and allow dissection of structurally/functionally important water-meditated BPh bridges, which could not be considered in earlier bioinformatics classification of BPh interactions
Multi-day water residence time as a mechanism for physical and biological gradients across intertidal flats
Tidal flats with shallow-sloping bathymetry under meso-to macrotidal conditions allow organisms to occupy similar tidal elevations at different distances from subtidal channels. As water floods or ebbs across such tidal flats during a single tidal cycle, upstream organisms may modify water properties such as chlorophyll concentration, while physiochemical properties may change due to close association with sediments. Here we report evidence for an additional mechanism establishing cross-shore gradients: multi-day water residence times, in the sense that even if water completely drains into subtidal channels at low tide, a large fraction returns to the flats on the next high tide. We applied circulation modeling and empirical measurements of water properties and benthic secondary production to a 1-km-wide tidal flat in Willapa Bay, Washington, USA. From the circulation model, water parcels on this intertidal flat have residence times up to 2 d, that is, water found on the flat at one high tide returns to the intertidal zone for a median of 4 successive semidiurnal high tides. Modeled residence times generally increased towards shore. Four empirical datasets showed cross-shore gradients consistent with modeled residence times: Salinity time series lagged towards shore; water column chlorophyll declined towards shore at fixed stations (near-bottom) and in surface transects more than could be explained by benthic suspension-feeding during a single transit of water; and oyster (Magallana = Crassostrea gigas) condition declined 25% over 0.5 km from channel to shore, independent of tidal elevation. One environmental measurement was more consistent with within-tide change, as water temperatures warmed towards shore on afternoon flood tides but showed no tidal-cycle lags. Taken together, these patterns suggest that multi-day water residence times can contribute to environmental heterogeneity from channel to shore on tidal flats, acting orthogonally to well-recognized estuarine gradients in residence time from ocean to river
- …