310 research outputs found
Some recent observations on small-scale fishery In the vicinity of Madras
Madras zone is one of the important fishing centres on the east coast of India. To understand the fish landings from different gears in Madras, three landing centres, viz., Kasimedu, Triplicane and Nochikuppam were selected. Kasimedu is about 8 km north of Triplicane and Nochikuppam is about 2 km south of Triplicane. The major catch components from the demersal trawls of this area arc silver bellies, threadfin breams, sciaenids, lizardfish, prawns, squids and cuttlefish. These groups are landed in a meagre quantity by the traditional gears, thus maintaining compatability between mechanised and non-mechanised gears in the exploitation of fishery resources off Madras
Measurements in a Transitioning Cone Boundary Layer at Freestream Mach 3.5
An experimental study was conducted in the Supersonic Low-Disturbance Tunnel to investigate naturally-occurring instabilities in a supersonic boundary layer on a 7 deg half- angle cone. All tests were conducted with a nominal freestream Mach number of M(sub infinity) = 3:5, total temperature of T(sub 0) = 299:8 K, and unit Reynolds numbers of Re(sub infinity) x 10(exp -6) = 9:89, 13.85, 21.77, and 25.73 m(exp -1). Instability measurements were acquired under noisy- ow and quiet- ow conditions. Measurements were made to document the freestream and the boundary-layer edge environment, to document the cone baseline flow, and to establish the stability characteristics of the transitioning flow. Pitot pressure and hot-wire boundary- layer measurements were obtained using a model-integrated traverse system. All hot- wire results were single-point measurements and were acquired with a sensor calibrated to mass ux. For the noisy-flow conditions, excellent agreement for the growth rates and mode shapes was achieved between the measured results and linear stability theory (LST). The corresponding N factor at transition from LST is N 3:9. The stability measurements for the quiet-flow conditions were limited to the aft end of the cone. The most unstable first-mode instabilities as predicted by LST were successfully measured, but this unstable first mode was not the dominant instability measured in the boundary layer. Instead, the dominant instabilities were found to be the less-amplified, low-frequency disturbances predicted by linear stability theory, and these instabilities grew according to linear theory. These low-frequency unstable disturbances were initiated by freestream acoustic disturbances through a receptivity process that is believed to occur near the branch I locations of the cone. Under quiet-flow conditions, the boundary layer remained laminar up to the last measurement station for the largest Re1, implying a transition N factor of N greater than 8:5
Embolic strokes of undetermined source: prevalence and patient features in the ESUS Global Registry
Background:
Recent evidence supports that most non-lacunar cryptogenic strokes are embolic. Accordingly, these strokes have been designated as embolic strokes of undetermined source (ESUS).
Aims:
We undertook an international survey to characterize the frequency and clinical features of ESUS patients across global regions.
Methods:
Consecutive patients hospitalized for ischemic stroke were retrospectively surveyed from 19 stroke research centers in 19 different countries to collect patients meeting criteria for ESUS.
Results:
Of 2144 patients with recent ischemic stroke, 351 (16%, 95% CI 15% to 18%) met ESUS criteria, similar across global regions (range 16% to 21%), and an additional 308 (14%) patients had incomplete evaluation required for ESUS diagnosis. The mean age of ESUS patients (62 years; SD = 15) was significantly lower than the 1793 non-ESUS ischemic stroke patients (68 years, p ≤ 0.001). Excluding patients with atrial fibrillation (n = 590, mean age = 75 years), the mean age of the remaining 1203 non-ESUS ischemic stroke patients was 64 years (p = 0.02 vs. ESUS patients). Among ESUS patients, hypertension, diabetes, and prior stroke were present in 64%, 25%, and 17%, respectively. Median NIHSS score was 4 (interquartile range 2–8). At discharge, 90% of ESUS patients received antiplatelet therapy and 7% received anticoagulation.
Conclusions:
This cross-sectional global sample of patients with recent ischemic stroke shows that one-sixth met criteria for ESUS, with additional ESUS patients likely among those with incomplete diagnostic investigation. ESUS patients were relatively young with mild strokes. Antiplatelet therapy was the standard antithrombotic therapy for secondary stroke prevention in all global regions
SimMobility Short-Term: An Integrated Microscopic Mobility Simulator
This paper presents the development of an integrated microscopic mobility simulator, SimMobility Short-Term (ST). The simulator is integrated because its models, inputs and outputs, simulated components, and code base are integrated within a multiscale agent- and activity-based simu- lation platform capable of simulating different spatiotemporal resolutions and accounting for different levels of travelers’ decision making. The simulator is microscopic because both the demand (agents and its trips) and the supply (trip realization and movements on the network) are microscopic (i.e., modeled individually). Finally, the simulator has mobility because it copes with the multimodal nature of urban networks and the need for the flexible simulation of innovative transportation ser - vices, such as on-demand and smart mobility solutions. This paper follows previous publications that describe SimMobility’s overall framework and models. SimMobility is an open-source, multiscale platform that considers land use, transportation, and mobility-sensitive behavioral models. SimMobility ST aims at simulating the high-resolution movement of agents (traffic, transit, pedestrians, and goods) and the operation of different mobility services and control and information systems. This paper presents the SimMobility ST modeling framework and system architecture and reports on its successful calibration for Singapore and its use in several scenarios of innovative mobility applications. The paper also shows how detailed performance measures from SimMobility ST can be integrated with a daily activity and mobility patterns simulator. Such integration is crucial to model accurately the effect of different technologies and service operations at the urban level, as the identity and preferences of simulated agents are maintained across temporal decision scales, ensuring the consistency and accuracy of simulated accessibility and performance measures of each scenario.Singapore. National Research Foundation (CREATE program)Singapore-MIT Alliance. Center. Future Urban Mobility Interdisciplinary Research Grou
Global survey of the frequency of atrial fibrillation-associated stroke: embolic stroke of undetermined source global registry
Background and Purpose—Atrial fibrillation (AF) is increasingly recognized as the single most important cause of disabling ischemic stroke in the elderly. We undertook an international survey to characterize the frequency of AF-associated stroke, methods of AF detection, and patient features.
Methods—Consecutive patients hospitalized for ischemic stroke in 2013 to 2014 were surveyed from 19 stroke research centers in 19 different countries. Data were analyzed by global regions and World Bank income levels.
Results—Of 2144 patients with ischemic stroke, 590 (28%; 95% confidence interval, 25.6–29.5) had AF-associated stroke, with highest frequencies in North America (35%) and Europe (33%) and lowest in Latin America (17%). Most had a history of AF before stroke (15%) or newly detected AF on electrocardiography (10%); only 2% of patients with ischemic stroke had unsuspected AF detected by poststroke cardiac rhythm monitoring. The mean age and 30-day mortality rate of patients with AF-associated stroke (75 years; SD, 11.5 years; 10%; 95% confidence interval, 7.6–12.6, respectively) were substantially higher than those of patients without AF (64 years; SD, 15.58 years; 4%; 95% confidence interval, 3.3–5.4; P<0.001 for both comparisons). There was a strong positive correlation between the mean age and the frequency of AF (r=0.76; P=0.0002).
Conclusions—This cross-sectional global sample of patients with recent ischemic stroke shows a substantial frequency of AF-associated stroke throughout the world in proportion to the mean age of the stroke population. Most AF is identified by history or electrocardiography; the yield of conventional short-duration cardiac rhythm monitoring is relatively low. Patients with AF-associated stroke were typically elderly (>75 years old) and more often women
Quantum superradiance on static black hole space-times
We study the quantum analogue of the classical process of superradiance for a massless charged scalar field on a static charged black hole space-time. We show that an “in” vacuum state, which is devoid of particles at past null infinity, contains an outgoing flux of particles at future null infinity. This radiation is emitted in the superradiant modes only, and is nonthermal in nature
Hadamard parametrix of the Feynman Green's function of a five-dimensional charged scalar field
The Hadamard parametrix is a representation of the short-distance singularity structure of the Feynman Green's function for a quantum field on a curved space-time background. Subtracting these divergent terms regularizes the Feynman Green's function and enables the computation of renormalized expectation values of observables. We study the Hadamard parametrix for a charged, massive, complex scalar field in five space-time dimensions. Even in Minkowski space-time, it is not possible to write the Feynman Green's function for a charged scalar field exactly in closed form. We therefore present covariant Taylor series expansions for the biscalars arising in the Hadamard parametrix. On a general space-time background, we explicitly state the expansion coefficients up to the order required for the computation of the renormalized scalar field current. These coefficients become increasingly lengthy as the order of the expansion increases, so we give the higher-order terms required for the calculation of the renormalized stress-energy tensor in Minkowski space-time only
Hadamard renormalization for a charged scalar field
The Hadamard representation of the Green's function of a quantum field on a curved space-time is a powerful tool for computations of renormalized expectation values. We study the Hadamard form of the Feynman Green's function for a massive charged complex scalar field in an arbitrary number of space-time dimensions. Explicit expressions for the coefficients in the Hadamard parametrix are given for two, three and four space-time dimensions. We then develop the formalism for the Hadamard renormalization of the expectation values of the scalar field condensate, current and stress-energy tensor. These results will have applications in the computation of renormalized expectation values for a charged quantum scalar field on a charged black hole space-time, and hence in addressing issues such as the quantum stability of the inner horizon
Meta-Policy Learning over Plan Ensembles for Robust Articulated Object Manipulation
Recent work has shown that complex manipulation skills, such as pushing or
pouring, can be learned through state-of-the-art learning based techniques,
such as Reinforcement Learning (RL). However, these methods often have high
sample-complexity, are susceptible to domain changes, and produce unsafe
motions that a robot should not perform. On the other hand, purely geometric
model-based planning can produce complex behaviors that satisfy all the
geometric constraints of the robot but might not be dynamically feasible for a
given environment. In this work, we leverage a geometric model-based planner to
build a mixture of path-policies on which a task-specific meta-policy can be
learned to complete the task. In our results, we demonstrate that a successful
meta-policy can be learned to push a door, while requiring little data and
being robust to model uncertainty of the environment. We tested our method on a
7-DOF Franka-Emika Robot pushing a cabinet door in simulation.Comment: 5 pages, Workshop on Learning for Task and Motion Planning (RSS2023
- …
