1,243 research outputs found
Suppressed Far-UV stellar activity and low planetary mass-loss in the WASP-18 system
WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (R′HK activity parameter lies slightly below the basal level; there is no significant time-variability in the log R′HK value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of HST aimed at explaining this anomaly. From the star’s spectral energy distribution, we infer the extinction (E(B − V) ≈ 0.01mag) and then the ISM column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s−1 cm−2. We employ the rescaled XUV solar fluxes to model of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10−20MJ Gyr−1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape
Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations
We use the zero-temperature random-field Ising model to study hysteretic
behavior at first-order phase transitions. Sweeping the external field through
zero, the model exhibits hysteresis, the return-point memory effect, and
avalanche fluctuations. There is a critical value of disorder at which a jump
in the magnetization (corresponding to an infinite avalanche) first occurs. We
study the universal behavior at this critical point using mean-field theory,
and also present preliminary results of numerical simulations in three
dimensions.Comment: 12 pages plus 2 appended figures, plain TeX, CU-MSC-747
An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS
We report on the construction, tests, calibrations and commissioning of an
Optical Readout Time Projection Chamber (O-TPC) detector operating with a
CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure
the cross sections of several key nuclear reactions involved in stellar
evolution. In particular, a study of the rate of formation of oxygen and carbon
during the process of helium burning will be performed by exposing the chamber
gas to intense nearly mono-energetic gamma-ray beams at the High Intensity
Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of
30x30x21 cm^3. Ionization electrons drift towards a double parallel grid
avalanche multiplier, yielding charge multiplication and light emission.
Avalanche induced photons from N2 emission are collected, intensified and
recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional
track images. The event's time projection (third coordinate) and the deposited
energy are recorded by photomultipliers and by the TPC charge-signal,
respectively. A dedicated VME-based data acquisition system and associated data
analysis tools were developed to record and analyze these data. The O-TPC has
been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd
source placed within its volume with a measured energy resolution of 3.0%.
Tracks of alpha and 12C particles from the dissociation of 16O and of three
alpha-particles from the dissociation of 12C have been measured during initial
in-beam test experiments performed at the HIgS facility at Duke University. The
full detection system and its performance are described and the results of the
preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program,
ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103
Cardiovascular effects of dietary salt intake in aged healthy cats: a 2-year prospective randomized, blinded, and controlled study
High salt dry expanded diets are commercially available for cats to increase water intake and urine volume, as part of the prevention or treatment of naturally occurring urinary stone formation (calcium oxalates and struvites). However, chronic high salt intake may have potential cardiovascular adverse effects in both humans, especially in aging individuals, and several animal models. The objective of this prospective, randomized, blinded, and controlled study was to assess the long-term cardiovascular effects of high salt intake in healthy aged cats. Twenty healthy neutered cats (10.1±2.4 years) were randomly allocated into 2 matched groups. One group was fed a high salt diet (3.1 g/Mcal sodium, 5.5 g/Mcal chloride) and the other group a control diet of same composition except for salt content (1.0 g/Mcal sodium, 2.2 g/Mcal chloride). Clinical examination, systolic and diastolic arterial blood pressure measurements, standard transthoracic echocardiography and conventional Doppler examinations were repeatedly performed on non-sedated cats by trained observers before and over 24 months after diet implementation. Radial and longitudinal velocities of the left ventricular free wall and the interventricular septum were also assessed in systole and diastole using 2-dimensional color tissue Doppler imaging. Statistics were performed using a general linear model. No significant effect of dietary salt intake was observed on systolic and diastolic arterial blood pressure values. Out of the 33 tested imaging variables, the only one affected by dietary salt intake was the radial early on late diastolic velocity ratio assessed in the endocardium of the left ventricular free wall, statistically lower in the high salt diet group at 12 months only (P = 0.044). In conclusion, in this study involving healthy aged cats, chronic high dietary salt intake was not associated with an increased risk of systemic arterial hypertension and myocardial dysfunction, as observed in some elderly people, salt-sensitive patients and animal models
Identification of new transitions and mass assignments of levels in Pr
The previously reported levels assigned to 151,152,153Pr have recently been
called into question regarding their mass assignment. The above questioned
level assignments are clarified by measuring g-transitions tagged with A and Z
in an in-beam experiment in addition to the measurements from 252Cf spontaneous
fission (SF) and establish new spectroscopic information from to
in the Pr isotopic chain. The isotopic chain 143-153Pr has been studied from
the spontaneous fission of 252Cf by using Gammasphere and also from the
measurement of the prompt g-rays in coincidence with isotopically-identified
fission fragments using VAMOS++ and EXOGAM at GANIL. The latter were produced
using 238U beams on a 9Be target at energies around the Coulomb barrier. The
g-g-g-g data from 252Cf (SF) and those from the GANIL in-beam A- and Z-gated
spectra were combined to unambiguously assign the various transitions and
levels in 151,152,153Pr and other isotopes. New transitions and bands in
145,147,148,149,150Pr were identified by using g-g-g and g-g-g-g coincidences
and A and Z gated g-g spectra. The transitions and levels previously assigned
to 151,153Pr have been confirmed by the (A,Z) gated spectra. The transitions
previously assigned to 152Pr are now assigned to 151Pr on the basis of the
(A,Z) gated spectra. Two new bands with 20 new transitions in 152Pr and one new
band with 7 new transitions in 153Pr are identified from the g-g-g-g
coincidence spectra and the (A,Z) gated spectrum. In addition, new g-rays are
also reported in 143-146Pr. New levels of 145,147-153Pr have been established,
reliable mass assignments of the levels in 151,152,153Pr have been reported and
new transitions have been identified in 143-146Pr showing the new avenues that
are opened by combining the two experimental approaches.Comment: Accepted in Phys. Rev.
Gas morphology and energetics at the surface of PDRs: new insights with Herschel observations of NGC 7023
We investigate the physics and chemistry of the gas and dust in dense
photon-dominated regions (PDRs), along with their dependence on the
illuminating UV field. Using Herschel-HIFI observations, we study the gas
energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023
is the prototype of a PDR illuminated by a B2V star and is one of the key
targets of Herschel. Our approach consists in determining the energetics of the
region by combining the information carried by the mid-IR spectrum (extinction
by classical grains, emission from very small dust particles) with that of the
main gas coolant lines. In this letter, we discuss more specifically the
intensity and line profile of the 158 micron (1901 GHz) [CII] line measured by
HIFI and provide information on the emitting gas. We show that both the [CII]
emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs)
arise from the regions located in the transition zone between atomic and
molecular gas. Using the Meudon PDR code and a simple transfer model, we find
good agreement between the calculated and observed [CII] intensities. HIFI
observations of NGC 7023 provide the opportunity to constrain the energetics at
the surface of PDRs. Future work will include analysis of the main coolant line
[OI] and use of a new PDR model that includes PAH-related species.Comment: Accepted for publication in Astronomy and Astrophysics Letters
(Herschel HIFI special issue), 5 pages, 5 figure
X-ray Studies of Exoplanets: A 2020 Decadal Survey White Paper
Over the last two decades, the discovery of exoplanets has fundamentally changed our perception of the universe and humanity's place within it. Recent work indicates that a solar system's X-ray and high energy particle environment is of fundamental importance to the formation and development of the atmospheres of close-in planets such as hot Jupiters, and Earth-like planets around M stars. X-ray imaging and spectroscopy provide powerful and unique windows into the high energy flux that an exoplanet experiences, and X-ray photons also serve as proxies for potentially transfigurative coronal mass ejections. Finally, if the host star is a bright enough X-ray source, transit measurements akin to those in the optical and infrared are possible and allow for direct characterization of the upper atmospheres of exoplanets. In this brief white paper, we discuss contributions to the study of exoplanets and their environs which can be made by X-ray data of increasingly high quality that are achievable in the next 10--15 years
- …