574 research outputs found

    The concept and impact analysis of a flexible mobility on demand system

    Get PDF
    This paper introduces an innovative transportation concept called Flexible Mobility on Demand (FMOD), which provides personalized services to passengers. FMOD is a demand responsive system in which a list of travel options is provided in real-time to each passen- ger request. The system provides passengers with flexibility to choose from a menu that is optimized in an assortment optimization framework. For operators, there is flexibility in terms of vehicle allocation to different service types: taxi, shared-taxi and mini-bus. The allocation of the available fleet to these three services is carried out dynamically so that vehicles can change roles during the day. The FMOD system is built based on a choice model and consumer surplus is taken into account in order to improve passenger satisfac- tion. Furthermore, profits of the operators are expected to increase since the system adapts to changing demand patterns. In this paper, we introduce the concept of FMOD and present preliminary simulation results. It is shown that the dynamic allocation of the vehicles to different services provides significant benefits over static allocation. Furthermore, it is observed that the trade-off between consumer surplus and operator’s profit is critical. The optimization model is adapted in order to take into account this trade-off by control- ling the level of passenger satisfaction. It is shown that with such control mechanisms FMOD provides improved results in terms of both profit and consumer surplus

    Treatment results and prognostic factors in primary thyroid lymphoma patients: a Rare Cancer Network study

    Get PDF
    Background: This study analyzed prognostic factors and treatment outcomes of primary thyroid lymphoma. Patients and Methods: Data were retrospectively collected for 87 patients (53 stage I and 34 stage II) with median age 65 years. Fifty-two patients were treated with single modality (31 with chemotherapy alone and 21 with radiotherapy alone) and 35 with combined modality treatment. Median follow-up was 51 months. Results: Sixty patients had aggressive lymphoma and 27 had indolent lymphoma. The 5- and 10-year overall survival (OS) rates were 74% and 71%, respectively, and the disease-free survival (DFS) rates were 68% and 64%. Univariate analysis revealed that age, tumor size, stage, lymph node involvement, B symptoms, and treatment modality were prognostic factors for OS, DFS, and local control (LC). Patients with thyroiditis had significantly better LC rates. In multivariate analysis, OS was influenced by age, B symptoms, lymph node involvement, and tumor size, whereas DFS and LC were influenced by B symptoms and tumor size. Compared with single modality treatment, patients treated with combined modality had better 5-year OS, DFS, and LC. Conclusions: Combined modality leads to an excellent prognosis for patients with aggressive lymphoma but does not improve OS and LC in patients with indolent lymphom

    Reverse flow digital artery pedicle flap for closure of diabetic forefoot ulceration

    Get PDF
    Digital artery pedicle flap is a useful surgical technique for coverage of plantar foot defects. For diabetic forefoot ulcers that are subject to recurrence despite consistent care, this flap can provide long-term durable closure. The authors provide a case report and overview of this innovative reconstructive procedure

    Defect-induced room temperature ferromagnetism in B-doped ZnO

    Get PDF
    ZnO microrods were grown on glass substrates by the spray pyrolysis method and boron was doped into the ZnO microrods by diffusion. X-ray diffraction results confirmed that the incorporation of B leads to a slight reduction in the deposit texture. Scanning electron microscopy measurements showed that the morphology of the ZnO samples changed from a microrod to nanocrystalline structure with B-doping. Photoluminescence data indicate that B-doping leads to a relative increase of the unstructured green band intensity. Magnetic measurements revealed that B-doped ZnO samples exhibited room temperature ferromagnetism related to defects, in agreement with first principles theoretical calculations

    Posttranscriptional regulation of angiotensin II type 1 receptor expression by glyceraldehyde 3-phosphate dehydrogenase

    Get PDF
    Regulation of angiotensin II type 1 receptor (AT1R) has a pathophysiological role in hypertension, atherosclerosis and heart failure. We started from an observation that the 3′-untranslated region (3′-UTR) of AT1R mRNA suppressed AT1R translation. Using affinity purification for the separation of 3′-UTR-binding proteins and mass spectrometry for their identification, we describe glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an AT1R 3′-UTR-binding protein. RNA electrophoretic mobility shift analysis with purified GAPDH further demonstrated a direct interaction with the 3′-UTR while GAPDH immunoprecipitation confirmed this interaction with endogenous AT1R mRNA. GAPDH-binding site was mapped to 1–100 of 3′-UTR. GAPDH-bound target mRNAs were identified by expression array hybridization. Analysis of secondary structures shared among GAPDH targets led to the identification of a RNA motif rich in adenines and uracils. Silencing of GAPDH increased the expression of both endogenous and transfected AT1R. Similarly, a decrease in GAPDH expression by H2O2 led to an increased level of AT1R expression. Consistent with GAPDH having a central role in H2O2-mediated AT1R regulation, both the deletion of GAPDH-binding site and GAPDH overexpression attenuated the effect of H2O2 on AT1R mRNA. Taken together, GAPDH is a translational suppressor of AT1R and mediates the effect of H2O2 on AT1R mRNA
    corecore