809 research outputs found

    Accelerating the development of new solar absorbers by photoemission characterization coupled with density functional theory

    Get PDF
    The expectation to progress towards Terawatts production by solar technologies requires continuous development of new materials to improve efficiency and lower the cost of devices beyond what is currently available at industrial level. At the same time, the turnaround time to make the investment worthwhile is progressively shrinking. Whereas traditional absorbers have developed in a timeframe spanning decades, there is an expectation that emerging materials will be converted into industrially relevant reality in a much shorter timeframe. Thus, it becomes necessary to develop new approaches and techniques that could accelerate decision-making steps on whether further research on a material is worth pursuing or not. In this review, we will provide an overview of the photoemission characterization methods and theoretical approaches that have been developed in the past decades to accelerate the transfer of emerging solar absorbers into efficient devices

    Zinc(II)-methimazole complexes: synthesis and reactivity

    Get PDF
    The tetrahedral S-coordinated complex [Zn(MeImHS)(4)](ClO4)(2), synthesised from the reaction of [Zn(ClO4)(2)] with methimazole (1-methyl-3H-imidazole-2-thione, MeImHS), reacts with triethylamine to yield the homoleptic complex [Zn(MeImS)(2)] (MeImS = anion methimazole). ESI-MS and MAS C-13-NMR experiments supported MeImS acting as a (N, S)-chelating ligand. The DFT-optimised structure of [Zn(MeImS)(2)] is also reported and the main bond lengths compared to those of related Zn-methimazole complexes. The complex [Zn(MeImS)(2)] reacts under mild conditions with methyl iodide and separates the novel complex [Zn(MeImSMe)(2)I-2] (MeImSMe = S-methylmethimazole). X-ray diffraction analysis of the complex shows a ZnI2N2 core, with the methyl thioethers uncoordinated to zinc. Conversely, the reaction of [Zn( MeImS)(2)] with hydroiodic acid led to the formation of the complex [Zn(MeImHS)(2)I-2] having a ZnI2S2 core with the neutral methimazole units S-coordinating the metal centre. The Zn-coordinated methimazole can markedly modify the coordination environment when changing from its thione to thionate form and vice versa. The study of the interaction of the drug methimazole with the complex [Zn(MeIm)(4)](2+) (MeIm = 1-methylimidazole) - as a model for Zn-enzymes containing a N-4 donor set from histidine residues shows that methimazole displaces only one of the coordinated MeIm molecules; the formation constant of the mixed complex [Zn(MeIm)(3)(MeImHS)](2+) was determined

    A structural spproach to the strength evaluation of linear chalcogen bonds

    Get PDF
    The experimental structural features of chalcogen bonding (ChB) interactions in over 34,000 linear fragments R–Ch⋯A (Ch = S, Se, Te; R = C, N, O, S, Se, Te; A = N, O, S, Se, Te, F, Cl, Br, I) were analyzed. The bond distances dR–Ch and the interaction distances dCh⋯A were investigated, and the functions δR–Ch and δCh⋯A were introduced to compare the structural data of R–Ch⋯A fragments involving different Ch atoms. The functions δR−Ch and δCh⋯A were calculated by normalizing the differences between the relevant bond dR–Ch and ChB interaction dCh⋯A distances with respect to the sum of the relevant covalent (rcovR + rcovCh) and the van der Waals (vdW) radii (rvdWCh + rvdWA), respectively. A systematic comparison is presented, highlighting the role of the chalcogen involved, the role of the R atoms covalently bonded to the Ch, and the role of the A species playing the role of chalcogen bond acceptor. Based on the results obtained, an innovative approach is proposed for the evaluation and categorization of the ChB strength based on structural data

    Study of CuI thin films properties for application as anode buffer layer in organic solar cells

    Get PDF
    After chemico-physical characterization of CuI thin films, the structures indium tin oxide (ITO) /CuI are systematically studied. We show that the morphology of the 3 nm thick CuI film depends on its deposition rate. To obtain smooth homogeneous CuI film, it is necessary to depose it at 0.005 nm/s. After optimization of the deposition conditions of CuI, it is shown that it behaves like a template for the organic layer. For instance, when the organic film is copper-phthalocyanine, the molecules which are usually perpendicular to the plane of the substrate lie parallel to it when deposited onto CuI. In a same way, when the electron donor is a prophyrin derivative, CuI allows to double the power conversion efficiency of the cells based on the heterojunction porphyrin/C-60. When CuI is used as anode buffer layer, it increases systematically the short circuit current, the open circuit voltage, thus the efficiency of the organic solar cell. These effects are related, not only to the improvement of the band matching between the ITO and the electron donor, but also to the templating effect of the CuI. Moreover, we show that the beneficial effect of CuI. is effective, not only with ITO, but also with fluorine doped tin oxide

    Numerical modelling of hip fracture patterns in human femur

    Get PDF
    [EN] Background and Objective: Hip fracture morphology is an important factor determining the ulterior surgical repair and treatment, because of the dependence of the treatment on fracture morphology. Although numerical modelling can be a valuable tool for fracture prediction, the simulation of femur fracture is not simple due to the complexity of bone architecture and the numerical techniques required for simulation of crack propagation. Numerical models assuming homogeneous fracture mechanical properties commonly fail in the prediction of fracture patterns. This paper focuses on the prediction of femur fracture based on the development of a finite element model able to simulate the generation of long crack paths. Methods: The finite element model developed in this work demonstrates the capability of predicting fracture patterns under stance loading configuration, allowing the distinction between the main fracture paths: intracapsular and extracapsular fractures. It is worth noting the prediction of different fracture patterns for the same loading conditions, as observed during experimental tests. Results and conclusions: The internal distribution of bone mineral density and femur geometry strongly influences the femur fracture morphology and fracture load. Experimental fracture paths have been analysed by means of micro-computed tomography allowing the comparison of predicted and experimental crack surfaces, confirming the good accuracy of the numerical model.The authors are indebted to University Complutense of Madrid and to the radiological team of the Hospital Universitario Infanta Leonor for supporting the experimental work on human bones included in this paper. The micro-CTs were performed in the Micro-Computed Tomography laboratory at CENIEH facilities with the collaboration of CENIEH staff. The authors gratefully acknowledge the funding support received from the Spanish Ministry of Economy and Competitiveness and the FEDER operation program for funding the projects DPI2013-46641-R, DPI2017-89197-C2-1-R, DPI2017-89197-C2-2-R, RTC-2015-3887-8 and the Generalitat Valenciana through theproject Prometeo/2016/007. The authors also acknowledge the funding support received from the Fundacion Espanola de Investigacion Osea y del Metabolismo Mineral through the 2018 research fellowship program.Marco, M.; Giner Maravilla, E.; Caeiro-Rey, JR.; Miguélez, MH.; Larrainzar-Garijo, R. (2019). Numerical modelling of hip fracture patterns in human femur. Computer Methods and Programs in Biomedicine. 173:67-75. https://doi.org/10.1016/j.cmpb.2019.03.010S677517

    Diradical Character of Neutral Heteroleptic Bis(1,2-dithiolene) Metal Complexes: Case Study of [Pd(Me2timdt)(mnt)] (Me2timdt = 1,3-Dimethyl-2,4,5-trithioxoimidazolidine; mnt2-= 1,2-Dicyano-1,2-ethylenedithiolate)

    Get PDF
    The reaction of the bis(1,2-dithiolene) complex [Pd(Me2timdt)2] (1; Me2timdt•- = monoreduced 1,3-dimethyl-2,4,5-trithioxoimidazolidine) with Br2 yielded the complex [Pd(Me2timdt)Br2] (2), which was reacted with Na2mnt (mnt2- = 1,2-dicyano-1,2-ethylenedithiolate) to give the neutral mixed-ligand complex [Pd(Me2timdt)(mnt)] (3). Complex 3 shows an intense solvatochromic near-infrared (NIR) absorption band falling between 955 nm in DMF and 1060 nm in CHCl3 (ϵ = 10700 M-1 cm-1 in CHCl3). DFT calculations were used to elucidate the electronic structure of complex 3 and to compare it with those of the corresponding homoleptic complexes 1 and [Pd(mnt)2] (4). An in-depth comparison of calculated and experimental structural and vis-NIR spectroscopic properties, supported by IEF-PCM TD-DFT and NBO calculations, clearly points to a description of 3 as a dithione-dithiolato complex. For the first time, a broken-symmetry (BS) procedure for the evaluation of the singlet diradical character (DC) of heteroleptic bis(1,2-dithiolene) complexes has been developed and applied to complex 3. The DC, predominant for 1 (nDC = 55.4%), provides a remarkable contribution to the electronic structures of the ground states of both 3 and 4, showing a diradicaloid nature (nDC = 24.9% and 27.5%, respectively). The computational approach developed here clearly shows that a rational design of the DC of bis(1,2-ditiolene) metal complexes, and hence their linear and nonlinear optical properties, can be achieved by a proper choice of the 1,2-dithiolene ligands based on their electronic structure

    Twelve Variants Polygenic Score for Low-Density Lipoprotein Cholesterol Distribution in a Large Cohort of Patients With Clinically Diagnosed Familial Hypercholesterolemia With or Without Causative Mutations

    Get PDF
    BACKGROUND: A significant proportion of individuals clinically diagnosed with familial hypercholesterolemia (FH), but without any disease-causing mutation, are likely to have polygenic hypercholesterolemia. We evaluated the distribution of a polygenic risk score, consisting of 12 low-density lipoprotein cholesterol (LDL-C)- raising variants (polygenic LDL-C risk score), in subjects with a clinical diagnosis of FH. METHODS AND RESULTS: Within the Lipid Transport Disorders Italian Genetic Network (LIPIGEN) study, 875 patients who were FH-mutation positive (women, 54.75%; mean age, 42.47±15.00 years) and 644 patients who were FH-mutation negative (women, 54.21%; mean age, 49.73±13.54 years) were evaluated. Patients who were FH-mutation negative had lower mean levels of pretreatment LDL-C than patients who were FH-mutation positive (217.14±55.49 versus 270.52±68.59 mg/dL, P<0.0001). The mean value (±SD) of the polygenic LDL-C risk score was 1.00 (±0.18) in patients who were FH-mutation negative and 0.94 (±0.20) in patients who were FH-mutation positive (P<0.0001). In the receiver operating characteristic analysis, the area under the curve for recognizing subjects characterized by polygenic hypercholesterolemia was 0.59 (95% CI, 0.56–0.62), with sensitivity and specificity being 78% and 36%, respectively, at 0.905 as a cutoff value. Higher mean polygenic LDL-C risk score levels were observed among patients who were FH-mutation negative having pretreatment LDL-C levels in the range of 150 to 350 mg/dL (150–249 mg/dL: 1.01 versus 0.91, P<0.0001; 250–349 mg/dL: 1.02 versus 0.95, P=0.0001). A positive correlation between polygenic LDL-C risk score and pretreatment LDL-C levels was observed among patients with FH independently of the presence of causative mutations. CONCLUSIONS: This analysis confirms the role of polymorphisms in modulating LDL-C levels, even in patients with genetically confirmed FH. More data are needed to support the use of the polygenic score in routine clinical practice

    Automatic Segmentation of Mouse Images

    Get PDF
    Genetic engineering has enabled the generation of organisms where molecular reactions in response to patho-physiological events can be measured in real-time by means of molecular imaging. This novel technology with the generation of reporter cell systems, that is cells engineered to express a bioluminescent protein in response to selected stimuli, had a major impact in pharmacological research. The recent generation of reporter mice, where the activity of a specific drug can be studied systematically, hold the promise to strengthen preclinical studies, providing a very rapid and comprehensive view on drug pharmacokinetics and activity in whole organisms. To date, a major limitation to the use of in vivo imaging for pharmaco-toxicological purposes resides in the limited throughput of the methodology: even if up to 100 animals can be reasonably processed in a day by some imaging techniques, the analysis of the data, including the identification and quantification of signals belonging to different mouse body areas, requires time and trained personnel, to manually identify specific body areas where drug effects can be measured. For this reason, we have developed an algorithm to automatically identify (segment) the body areas of a given reporter mouse. Automatic segmentation is obtained by combining classical image processing and pattern recognition techniques. The algorithm has been tested on more than 1000 mouse images differing for sex, pose and lighting conditions, and acquired by devices of different companies. Our algorithm, not only increases processivity (the whole dataset analyzed by a trained scientist in a week was processed overnight by our software), but also provides more accurate results. In conclusion, automatic systems may outperform current manual image analysis, allowing to obtain a detailed comprehension of real-time molecular processes in living animals with a standardized, rapid, and cost-effective approach. This work was supported by EC. (STREP EWA LSHM-CT-2005-518245) NIH (RO1AG027713) to A.M

    Functionalization and Coordination Effects on the Structural Chemistry of Pendant Arm Derivatives of 1,4,7-trithia-10-aza-cyclododecane ([12]aneNS3)

    Get PDF
    The effect of different pendant arms on the structural chemistry of the 1,4,7-trithia-10-aza-cyclododecane ([12]aneNS3) macrocycle is discussed in relation to the coordination chemistry of all known functionalized derivatives of [12]aneNS3, which have been structurally characterized
    corecore