108 research outputs found

    Simulation of a non-invasive charge detector for quantum cellular automata

    Full text link
    Information in a Quantum Cellular Automata architecture is encoded in the polarizazion state of a cell, i.e., in the occupation numbers of the quantum dots of which the cell is made up. Non-invasive charge detectors of single electrons in a quantum dot are therefore needed, and recent experiments have shown that a quantum constriction electrostatically coupled to the quantum dot may be a viable solution. We have performed a numerical simulation of a system made of a quantum dot and a nearby quantum point contact defined, by means of depleting metal gates, in a two-dimensional electron gas at a GaAs/AlGaAs heterointerface. We have computed the occupancy of each dot and the resistance of the quantum wire as a function of the voltage applied to the plunger gate, and have derived design criteria for achieving optimal sensitivity.Comment: 8 pages, RevTeX, epsf, 5 figure

    Experimental prototype development and performance analysis of a small-scale combined cycle for energy generation from biomass

    Get PDF
    Abstract This paper presents a research activity aimed at exploiting combined cycles (gas turbine plants coupled with steam cycles) for small-scale energy generation from carbon-neutral biomass. Such a goal has never been achieved before, since combined cycles are generally suited only for large-scale applications and for clean fuels. In order to adapt combined cycles to small-scale energy generation using dirty fuels, the implementation of cost-effective and commercially available components is studied, such as the use of a turbocharger and a power turbine taken from the automotive industry. The ongoing realization of the first prototype of small-scale combined cycle is presented in this paper, providing a detailed description of both the plant architecture and the main components chosen. In addition, a commercially available tool (Cycle Tempo) is used to demonstrate the high feasibility and potential of the plant in terms of efficiency. To that end, different plant configurations are studied and the effects of losses on the plant performance are investigated in detail

    design of a novel open space test rig for small scale wind turbine

    Get PDF
    Abstract In the present paper, an innovative and cost-effective open test rig for small and medium wind turbines is proposed. The main aim is to develop a valid alternative to wind tunnels, which present unresolved problems such as the unmatched Reynolds numbers for downscaled wind turbine tests. The proposed test bench concept is an open field, subsonic facility for horizontal and vertical axis wind turbines. The core of the test bench is a cluster of axial fans, positioned at a given height from the ground, which generate an air flow suitable for testing a wind turbine placed in front of the fans. The present work aims at investigating the feasibility of this novel concept of test rig for small wind turbines having a rotor diameter smaller than 5 m. A thorough CFD analysis is performed in this paper in order to assess the characteristics of the wind generated by the fans in terms of uniformity and intensity, even in case of atmospheric disturbances. The developed CFD modelling is also instrumental in both determining the maximum rotor diameter that can be tested and selecting the correct position for a wind turbine in the proposed open test rig

    Impact of the laminar flame speed correlation on the results of a quasi-dimensional combustion model for Spark-Ignition engine

    Get PDF
    Abstract In the present study, the impact of the laminar flame speed correlation on the prediction of the combustion process and performance of a gasoline engine is investigated using a 1D numerical approach. The model predictions are compared with experimental data available for full- and part-load operations of a small-size naturally aspirated Spark-Ignition (SI) engine, equipped with an external EGR circuit. A 1D model of the whole engine is developed in the GT-Powerâ„¢ environment and is integrated with refined sub-models of the in-cylinder processes. In particular, the combustion is modelled using the fractal approach, where the burning rate is directly related to the laminar flame speed. In this work, three laminar flame speed correlations are assessed, including both experimentally- and numerically-derived formulations, the latter resulting from the fitting of laminar flame speeds computed by a chemical kinetic solver. Each correlation is implemented within the combustion sub-model, which is properly tuned to reproduce the experimental performance of the engine at full load. Then, the reliability of the considered flame speed formulations is proved at part-loads, even under external EGR operations

    Acoustic cavitation by means ultrasounds in the extra virgin olive oil extraction process

    Get PDF
    Abstract The virgin olive oil extraction process has changed very little over the past 20 years when the mechanical crushers, malaxers, horizontal and vertical centrifuges, took place in the olive mills. However, malaxation process remains the main critical step due to the discontinuity of this process. In previous activities, the same authors demonstrated how application of new emerging technologies could offer an interesting number of advantages to remove this bottleneck and, among the others, the ultrasound (US) technology is the most promising one, due to its mechanical and thermal effects due to the acoustic cavitation phenomenon. Acoustic cavitation, provided by means of low frequency high power ultrasounds, increases the quality, the work capacity and efficiency of the extraction plant, guaranteeing the sustainability. The paper shows how the authors have designed, realized and tested the first in the world continuous ultrasonic full-scale device for the extra virgin olive oil industry, with the aim to obtain the best product quality at the highest efficiency. Considering the heterogeneity of the olive paste, which is composed of different tissues, and considering the large number of parameters able to influence the process, a 3D multiphase CFD analysis was used as auxiliary tool in the design a so-called Sono-Heat-Exchanger (SHE). This innovative device, to be placed between the crusher and the decanter, is a combination of a heat-exchanger with plate-shape ultrasonic transducers. Finally, experimental results about yields and phenols contents demonstrated the relevance of this innovation

    Desarrollo e implementación del curso de introducción a la física en la universidad autónoma de la ciudad de México (UACM)

    Get PDF
    El trabajo que ahora presentamos da cuenta del proceso de implementación del curso de Introducción a la Física que se imparte en la UACM basado en el trabajo del Physics Education Group de la Universidad de Washington. Éste se desarrolla desde un enfoque constructivista, con la intención de desarrollar conocimiento operativo y habilidades de pensamiento científico como elementos que pensamos pueden contrarrestar el fracaso usual en los cursos de física. Los resultados que se presentan en esta ponencia buscan dar evidencia de que la efectividad en el aprendizaje de la ciencia requiere del involucramiento mental activo y de la consideración del estado inicial real del estudiante, entre otras cosas; asimismo, se presenta un marco metodológico para implementar y evaluar actividades de aprendizaje bajo las mismas premisas

    Gate Leakage Reduction by Clocked Power Supply of Adiabatic Logic Circuits

    Get PDF
    Losses due to gate-leakage-currents become more dominant in new technologies as gate leakage currents increase exponentially with decreasing gate oxide thickness. The most promising Adiabatic Logic (AL) families use a clocked power supply with four states. Hence, the full <i>V</i><sub><i>DD</i></sub> voltage drops over an AL gate only for a quarter of the clock cycle, causing a full gate leakage only for a quarter of the clock period. The rising and falling ramps of the clocked power supply lead to an additional energy consumption by gate leakage. This energy is smaller than the fraction caused by the constant <i>V</i><sub><i>DD</i></sub> drop, because the gate leakage exponentially depends on the voltage across the oxide. To obtain smaller energy consumption, Improved Adiabatic Logic (IAL) has been introduced. IAL swaps all n- and p-channel transistors. The logic blocks are built of p-channel devices which show gate tunneling currents significantly smaller than in n-channel devices. Using IAL instead of conventional AL allows an additional reduction of the energy consumption caused by gate leakage. Simulations based on a 90nm CMOS process show a lowering in gate leakage energy consumption for AL by a factor of 1.5 compared to static CMOS. For IAL the factor is up to 4. The achievable reduction varies depending on the considered AL family and the complexity of the gate

    Fluid dynamic-based Engineering design of a Full-Scale Device for the improvement of Extra Virgin Olive Oil Yield and Quality by means of Combined Acoustic Cavitation and Thermal Conditioning

    Get PDF
    After some hesitations, the scientific community is jointly converging on the benefits due to the ultrasound treatment by means of mechanical effects generated by acoustic cavitation phenomena occurring into the olive oil paste proposed initially by Amirante and Clodoveo. In recent works, many authors have now confirmed that this promising emerging technology produces relevant beneficial effects if applied to the extraction process under well-controlled conditions. In the last years, the industrial applications of ultrasound (US) in the Extra-Virgin Olive Oil (EVOO) extraction process are changing the paradigm of the knowledge in this field of interest due to a great effort of the research activity. In the present work, the design of the device by means a Three-Dimensional (3D) Multiphase Computational Fluid Dynamic (CFD) analysis was performed, which describes the ultrasound effects in the olive paste, necessary to control the US waves propagation. Thus, fluid dynamic analysis allowed to predict the flow path in the ultrasound devices, to evaluate the flow parameters of the olive paste inside the SHE and the cavitation phenomenon, with the aim to find an optimal design, capable to ensure the best ultrasounds and mixing effects. Moreover, experimental results demonstrated that the machine can guarantee an actual simultaneous improvement of the olive oil extraction yield, as well as of the product quality. Finally, the results from sensory evaluations are summarized confirming the goodness of EVOO obtained by means of US

    Influencia del batido y de los parámetros de extracción en la calidad del aceite de oliva virgen

    Get PDF
    The mixing time, the temperature and the degree of dilution of olive paste are the main parameters liable to change during mixing and oil ext raction. They can greatly differ from a processing run to another, with variations being observed in Tuscan oil mills, between 26ºC and 36ºC, 40’ and 90’, and 10% and 50% respectively, for the temperature, the mixing time and the water added during the centrifugal extraction. This note reports on the results of some experimental trials run during the 1998 olive oil year in Tuscany. The mixing time and temperature as well as the olive paste dilution were changed one at a time and were assessed for their influence on extraction yield and oil quality. The best conditions to optimise the product yield and quality were identified.El tiempo de batido, la temperatura y el grado de dilución de la pasta de aceituna, son los principales parámetros que pueden sufrir cambios durante el batido y la extracción del aceite. Estos pueden diferir mucho de un proceso a otro, habiendo sido observadas variaciones en los aceites de molino de Toscana, entre 26ºC y 36ºC, 40’ y 90’, y 10% y 50% respectivamente, para la temperatura, el tiempo de batido y el agua añadida durante la extracción por centrifugación. Este artículo presenta los resultados de algunos ensayos experimentales realizados durante el año 1998 con aceite de oliva de Toscana. El tiempo de batido y la temperatura, así como la dilución de la pasta de aceitunas, se variaron uno a uno y se evaluaron por su influencia en el rendimiento de la extracción y la calidad del aceite. Las mejores condiciones para optimizar el rendimiento y la calidad del producto fueron identificadas
    • …
    corecore