85 research outputs found

    Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop?

    Get PDF
    <p>Fungus-growing termites are associated with genus-specific fungal symbionts, which they acquire via horizontal transmission. Selection of specific symbionts may be explained by the provisioning of specific, optimal cultivar growth substrates by termite farmers. We tested whether differences in in vitro performance of Termitomyces cultivars from nests of three termite species on various substrates are correlated with the interaction specificity of their hosts. We performed single-factor growth assays (varying carbon sources), and a two-factor geometric framework experiment (simultaneously varying carbohydrate and protein availability). Although we did not find qualitative differences between Termitomyces strains in carbon-source use, there were quantitative differences, which we analysed using principal component analysis. This showed that growth of Termitomyces on different carbon sources was correlated with termite host genus, rather than host species, while growth on different ratios and concentrations of protein and carbohydrate was correlated with termite host species. Our findings corroborate the interaction specificity between fungus-growing termites and Termitomyces cultivars and indicate that specificity between termite hosts and fungi is reflected both nutritionally and physiologically. However, it remains to be demonstrated whether those differences contribute to selection of specific fungal cultivars by termites at the onset of colony foundation.</p

    Asexual and sexual reproduction are two separate developmental pathways in a <i>Termitomyces</i> species

    Get PDF
    Although mutualistic symbioses per definition are beneficial for interacting species, conflict may arise if partners reproduce independently. We address how this reproductive conflict is regulated in the obligate mutualistic symbiosis between fungus-growing termites and Termitomyces fungi. Even though the termites and their fungal symbiont disperse independently to establish new colonies, dispersal is correlated in time. The fungal symbiont typically forms mushrooms a few weeks after the colony has produced dispersing alates. It is thought that this timing is due to a trade-off between alate and worker production; alate production reduces resources available for worker production. As workers consume the fungus, reduced numbers of workers will allow mushrooms to 'escape' from the host colony. Here, we test a specific version of this hypothesis: the typical asexual structures found in all species of Termitomyces-nodules-are immature stages of mushrooms that are normally harvested by the termites at a primordial stage. We refute this hypothesis by showing that nodules and mushroom primordia are macro- and microscopically different structures and by showing that in the absence of workers, primordia do, and nodules do not grow out into mushrooms. It remains to be tested whether termite control of primordia formation or of primordia outgrowth mitigates the reproductive conflict.</p

    Neurospora from natural populations: Population genomics insights into the Life history of a model microbial Eukaryote

    Get PDF
    The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research

    Ancestral predisposition toward a domesticated lifestyle in the termite-cultivated fungus Termitomyces

    Get PDF
    The ancestor of termites relied on gut symbionts for degradation of plant material, an association that persists in all termite families. However, the single-lineage Macrotermitinae has additionally acquired a fungal symbiont that complements digestion of food outside the termite gut. Phylogenetic analysis has shown that fungi grown by these termites forma clade—the genus Termitomyces—but the events leading toward domestication remain unclear. To address this, we reconstructed the lifestyle of the common ancestor of Termitomyces using a combination of ecological data with a phylogenomic analysis of 21 related non-domesticated species and 25 species of Termitomyces. We show that the closely related genera Blastosporella and Arthromyces also contain insect-associated species. Furthermore, the genus Arthromyces produces asexual spores on the mycelium, which may facilitate insect dispersal when growing on aggregated subterranean fecal pellets of a plant-feeding insect. The sister-group relationship between Arthromyces and Termitomyces implies that insect association and asexual sporulation, present in both genera, preceded the domestication of Termitomyces and did not follow domestication as has been proposed previously. Specialization of the common ancestor of these two genera on an insect-fecal substrate is further supported by similar carbohydrate-degrading profiles between Arthromyces and Termitomyces. We describe a set of traits that may have predisposed the ancestor of Termitomyces toward domestication, with each trait found scattered in related taxa outside of the termite-domesticated clade. This pattern indicates that the origin of the termite-fungus symbiosis may not have required large-scale changes of the fungal partner.http://www.cell.com/current-biology/homeam2022BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    Sex in the PAC: A hidden affair in dark septate endophytes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or <it>in vitro </it>and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the <it>Phialocephala fortinii </it>s. l. - <it>Acephala applanata </it>species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (<it>MAT</it>) genes involved in reproductive processes.</p> <p>Results</p> <p>The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas <it>A. applanata </it>had a homothallic (self-fertile) <it>MAT </it>locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. <it>MAT </it>genes were shown to evolve under strong purifying selection.</p> <p>Conclusions</p> <p>The signature of sex was found in worldwide populations of PAC species and functionality of <it>MAT </it>genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and <it>in vitro </it>crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.</p

    Monoculture of Leafcutter Ant Gardens

    Get PDF
    Background -- Leafcutter ants depend on the cultivation of symbiotic Attamyces fungi for food, which are thought to be grown by the ants in single-strain, clonal monoculture throughout the hundreds to thousands of gardens within a leafcutter nest. Monoculture eliminates cultivar-cultivar competition that would select for competitive fungal traits that are detrimental to the ants, whereas polyculture of several fungi could increase nutritional diversity and disease resistance of genetically variable gardens. Methodology/Principal Findings -- Using three experimental approaches, we assessed cultivar diversity within nests of Atta leafcutter ants, which are most likely among all fungus-growing ants to cultivate distinct cultivar genotypes per nest because of the nests' enormous sizes (up to 5000 gardens) and extended lifespans (10–20 years). In Atta texana and in A. cephalotes, we resampled nests over a 5-year period to test for persistence of resident cultivar genotypes within each nest, and we tested for genetic differences between fungi from different nest sectors accessed through excavation. In A. texana, we also determined the number of Attamyces cells carried as a starter inoculum by a dispersing queens (minimally several thousand Attamyces cells), and we tested for genetic differences between Attamyces carried by sister queens dispersing from the same nest. Except for mutational variation arising during clonal Attamyces propagation, DNA fingerprinting revealed no evidence for fungal polyculture and no genotype turnover during the 5-year surveys. Conclusions/Significance -- Atta leafcutter ants can achieve stable, fungal monoculture over many years. Mutational variation emerging within an Attamyces monoculture could provide genetic diversity for symbiont choice (gardening biases of the ants favoring specific mutational variants), an analog of artificial selection.The research was supported by National Science Foundation awards DEB-0920138, DEB-0639879, and DEB-0110073 to UGM; DEB-0949689 to T.R. Schultz, N. Mehdiabadi, and UGM; and a Fellowship (02/05) from the Conselho Nacional de Desenvolvimento Científico e Tecnológico to AR. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The red yeasts are an early diverged group of basidiomycetes comprising sexual and asexual species. Sexuality is based on two compatible mating types and sexual identity is determined by <it>MAT </it>loci that encode homeodomain transcription factors, peptide pheromones and their receptors. The objective of the present study was to investigate the presence and integrity of <it>MAT </it>genes throughout the phylogenetic diversity of red yeasts belonging to the order Sporidiobolales.</p> <p>Results</p> <p>We surveyed 18 sexual heterothallic and self-fertile species and 16 asexual species. Functional pheromone receptor homologues (<it>STE3.A1 </it>and <it>STE3.A2</it>) were found in multiple isolates of most of the sexual and asexual species. For each of the two mating types, sequence comparisons with whole-genome data indicated that synteny tended to be conserved along the pheromone receptor region. For the homeodomain transcription factor, likelihood methods suggested that diversifying selection acting on the self/non-self recognition region promotes diversity in sexual species, while rapid evolution seems to be due to relaxed selection in asexual strains.</p> <p>Conclusions</p> <p>The majority of both sexual and asexual species of red yeasts have functional pheromone receptors and homeodomain homologues. This and the frequent existence of asexual strains within sexual species, makes the separation between sexual and asexual species imprecise. Events of loss of sexuality seem to be recent and frequent, but not uniformly distributed within the Sporidiobolales. Loss of sex could promote speciation by fostering the emergence of asexual lineages from an ancestral sexual stock, but does not seem to contribute to the generation of exclusively asexual lineages that persist for a long time.</p

    Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus

    Get PDF
    Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya

    Infectious Speciation Revisited: Impact of Symbiont-Depletion on Female Fitness and Mating Behavior of Drosophila paulistorum

    Get PDF
    The neotropical Drosophila paulistorum superspecies, consisting of at least six geographically overlapping but reproductively isolated semispecies, has been the object of extensive research since at least 1955, when it was initially trapped mid-evolution in flagrant statu nascendi. In this classic system females express strong premating isolation patterns against mates belonging to any other semispecies, and yet uncharacterized microbial reproductive tract symbionts were described triggering hybrid inviability and male sterility. Based on theoretical models and limited experimental data, prime candidates fostering symbiont-driven speciation in arthropods are intracellular bacteria belonging to the genus Wolbachia. They are maternally inherited symbionts of many arthropods capable of manipulating host reproductive biology for their own benefits. However, it is an ongoing debate as to whether or not reproductive symbionts are capable of driving host speciation in nature and if so, to what extent. Here we have reevaluated this classic case of infectious speciation by means of present day molecular approaches and artificial symbiont depletion experiments. We have isolated the α-proteobacteria Wolbachia as the maternally transmitted core endosymbionts of all D. paulistorum semispecies that have coevolved towards obligate mutualism with their respective native hosts. In hybrids, however, these mutualists transform into pathogens by overreplication causing embryonic inviability and male sterility. We show that experimental reduction in native Wolbachia titer causes alterations in sex ratio, fecundity, and mate discrimination. Our results indicate that formerly designated Mycoplasma-like organisms are most likely Wolbachia that have evolved by becoming essential mutualistic symbionts in their respective natural hosts; they have the potential to trigger pre- and postmating isolation. Furthermore, in light of our new findings, we revisit the concept of infectious speciation and discuss potential mechanisms that can restrict or promote symbiont-induced speciation at post- and prezygotic levels in nature and under artificial laboratory conditions

    Molecular techniques revolutionize knowledge of basidiomycete evolution

    Full text link
    corecore