62 research outputs found
The combined effect of prostaglandin administration and ram introduction in multiparous and nulliparous sheep in anestrous period on prolificacy
In the study it was aimed to investigate and compare the combined effectiveness of ram introduction (ram effect) and prostaglandin F2 alpha (PGF2α)
administration in multiparous and nulliparous Kangal White Karaman ewes during the out of breeding season. The ewes were first divided into two main
groups: non-lactating multiparous (Group M, n=104) and nulliparous (Group N, n=101). The multiparous and nulliparous animals were further divided in to two
subgroups. Group MRP (n=50 multiparous) and NRP (n=51 nulliparous) were injected with a single dose of PGF2α on the first day of ram introduction. And the
Group MR (n= 54) and NR (n= 50) served as controls with ram introduction but no PGF2α injection. In all of the groups, adult, purebred and fertile rams stayed with
the ewes for 45 days. The blood samples were collected at 3-day intervals for 18 days after ram introduction from subsets of ewes (n=17 per group) to monitor
the serum progesterone concentration. The total lambing ratios in multiparous and nulliparous animals were 72.1% (75/104) and 44.6% (45/101), respectively
(P<0.001). Among the PGF2α and non-PGF2α subgroups of multiparous and nulliparous ewes, the lowest lambing rate was observed in Group NR (36.0%). In
multiparous ewes (Groups MR and MRP), the mean progesterone level varied significantly among the days (P<0.001). In contrast, in Group NRP, the progesterone
levels varied significantly over the tested time course (P0.05). We concluded that being multiparous
contributes to the success of PGF2α administration in combination with ram introduction in the anestrous period in ewes. Furthermore, PGF2α administration
together with ram introduction positively affects the lambing rate in nulliparous ewes
Molecular gated nanoporous anodic alumina for the detection of cocaine
[EN] We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement
molecular gates for sensing applications. In our design, a NAA support is loaded with a fluorescent
reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked
by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material
was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation
buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from
pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo
delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple
procedure a limit of detection as low as 5 × 10−7 M was calculated for cocaine. The gated NAA was
successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures
was assessed. Based on these results, we believe that NAA could be a suitable support to prepare
optical gated probes with a synergic combination of the favourable features of selected gated sensing
systems and NAA.We thank Projects MAT2015-64139-C4-1-R and TEC2015-71324-R (MINECO/FEDER), the Catalan Government (Project 2014 SGR 1344), the ICREA (ICREA2014 Academia Award) and the Generalitat Valenciana (Project PROMETEOII/2014/047) for support. We also thank to the Agencia Espanola del Medicamento y Productos Sanitarios for its concessions. A.R. thanks the UPV for her predoctoral fellowship. The authors also thank the Electron Microscopy Service at UPV for support.Ribes, À.; Xifre Perez, E.; Aznar, E.; Sancenón Galarza, F.; Pardo Vicente, MT.; Marsal, LF.; Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports. 6. https://doi.org/10.1038/srep38649S386496Nadrah, P., Planinšek, O. & Gaberšček, M. Stimulus-responsive Mesoporous Silica Particles. J. Mater. Sci. 49, 481–495 (2014).Baeza, A., Colilla, M. & Vallet-Regí, M. Advances in Mesoporous Silica Nanoparticles for Targeted Stimuli-Responsive Drug Delivery. Expert Opin. Drug Deliv. 12, 319–337 (2015).Karimi, M., Mirshekari, H., Aliakbari, M., Zangabad, P. S. & Hamblin, M. R. Smart Mesoporous Silica Nanoparticles for Controlled-Release Drug Delivery. Nanotech. Rev. 5, 195–207 (2016).Aznar, E. et al. Gated Materials for On-Command Release of Guest Molecules. Chem. Rev. 116, 561−718 (2016).Sancenón, F., Pascual, Ll., Oroval, M., Aznar, E. & Martínez-Máñez, R. Gated Silica Mesoporous Materials in Sensing Applications. Chemistry Open. 4, 418–437 (2015).Lu, C.-H., Willner, B. & Willner, I. DNA nanotechnology: From sensing and DNA machines to drug-delivery systems. ACSNano 7, 8320–8332 (2013).Klajn, R., Stoddart, J. F. & Grzybowski, B. A. Nanoparticles Functionalized With Reversible Molecular And Supramolecular Switches. Chem. Soc. Rev. 39, 2203–2237 (2010).Wei, R., Martin, T. G., Rant, U. & Dietz, H. DNA Origami Gatekeepers for Solid-State Nanopores. Angew. Chem. Int. Ed. 51, 4864 4867 (2012).Zhu, C. L., Lu, C. H., Song, X. Y., Yang, H. H. & Wang, X. R. Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. J. Am. Chem. Soc. 133, 1278–1281 (2011).Özalp, V. C., Pinto, A., Nikulina, E., Chulivin, A. & Schäfer, T. In Situ Monitoring of DNA-Aptavalve Gating Function on Mesoporous Silica Nanoparticles. Part. Part. Sys. Charact. 31, 161–167 (2014).Choi, Y. L., Jaworski, J., Seo, M. L., Lee, S. J. & Jung, J. H. Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. J. Mater. Chem. 21, 7882–7885 (2011).Zhang, Z., Wang, F., Balogh, D. & Willner, I. pH-controlled release of substrates from mesoporous SiO2 nanoparticles gated by metal ion-dependent DNAzymes. J. Mater. Chem. B. 2, 4449–4455 (2014).Fu, L. et al. Portable and Quantitative Monitoring of Heavy Metal Ions Using Dnazyme-Capped Mesoporous Silica Nanoparticles with a Glucometer Readout. J. Mater. Chem. B. 1, 6123–6128 (2013).Díez, P. et al. Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. J. Am. Chem. Soc. 136, 9116–9123 (2014).Tang, D. et al. Low-Cost and Highly Sensitive lmmunosensing Platform for Aflatoxins Using One-Step Competitive Displacement Reaction Mode and Portable Glucometer-Based Detection. Anal. Chem. 86, 11451–11458 (2014).Hou, L., Zhu, C., Wu, X., Chen, G. & Tang, D. Bioresponsive Controlled Release from Mesoporous Silica Nanocontainers with Glucometer Readout. Chem. Commun. 50, 1441–1443 (2014).Chen, Z. et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination. Biosens. Bioelectro. 75, 8–14 (2016).Pascual, L. L. et al. Oligonucleotide-Capped Mesoporous Silica Nanoparticles as DNA-Responsive Dye Delivery Systems for Genomic DNA Detection. Chem. Commun. 51, 1414–1416 (2015).Qian, R., Ding, I. & Ju, H. Switchable Fluorescent Imaging of Intracellular Telomerase Activity Using Telomerase-Responsive Mesoporous Silica Nanoparticle. J. Am. Chem. Soc. 135, 13282–13285 (2013).Ren, K., Wu, J., Zhang, Y., Yan, F. & Ju, H. Proximity Hybridization Regulated DNA Biogate for Sensitive Electrochemical Immunoassay. Anal. Chem. 86, 7494–7499 (2014).Chen, Y., Santos, A., Wang, Y., Wang, C. & Losic, D. Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications. ACS Appl Mater Interfaces. 7, 19816–19824 (2015).Aw, M. S., Bariana, M. & Losic, D. In Nanoporous Alumina. Fabrication, Structure, Properties and Applications (ed. Losic, D., Santos, A. ) 319–354 (Springer International Publishing, 2015).Urteaga, R. & Berli, C. L. In Nanoporous Alumina. Fabrication, Structure, Properties and Applications (ed. Losic, D., Santos, A. ) 249–269 (Springer International Publishing, 2015).Vojkuvka, L., Marsal, L. F., Ferré-Borrull, J., Formentin, P. & Pallarés, J. Self-Ordered Porous Alumina Membranes with Large Lattice Constant Fabricated by Hard Anodization. Superlattices Microstruct. 44, 577–582 (2008).De la Escosura-Muñiz, A. & Merkoçi, A. Nanochannels Preparation and Application in Biosensing. ACS Nano. 6, 7556–7583 (2012).Kumeria, T. et al. Nanoporous Anodic Alumina Rugate Filters for Sensing of Ionic Mercury: Toward Environmental Point-of-Analysis Systems. ACS Appl. Mater. Interfaces. 6, 12971−12978 (2014).Santos, A., Kumeria, T. & Losic, D. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors. Materials. 7, 4297–4320 (2014).Ferré-Borrull, J., Pallarès, J., Macías, G. & Marsal, L. F. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications. Materials. 7, 5225–5253 (2014).Gong, D., Yadavalli, V., Paulose, M., Pishko, M. & Grimes, C. A. Controlled Molecular Release Using Nanoporous Alumina Capsules. Biomed Microdevices. 5, 75–80 (2003).Alvarez, S. D., Li, C.-P., Chiang, C. E., Schuller, I. K. & Sailor, M. J. A Label-Free Porous Alumina Interferometric Immunosensor. ACSNano. 3, 3301–3307 (2009).Krismastuti, F. S. H., Bayat, H., Voelcker, N. H. & Schönherr, H. Real Time Monitoring of Layer-by-Layer Polyelectrolyte Deposition and Bacterial Enzyme Detection in Nanoporous Anodized Aluminum Oxide Anal. Chem. 87, 3856–3863 (2015).Ma, D.-L. et al. A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium (III) Complex and a Three-Way DNA Junction Architecture. ACS Appl. Mater. Interfaces. 7, 19060−19067 (2015).Kohli, P. et al. DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. Science 305, 984–986 (2004).Abelow, A. E. et al. Biomimetic glass nanopores employing aptamer gates responsive to a small molecule. Chem. Commun. 46, 7984–7986 (2010).Ma, D.-L., Chan, D. S.-H. & Leung, C.-H. Group 9 Organometallic Compounds for Therapeutic and Bioanalytical Applications. Acc. Chem. Res. 47, 3614–3631 (2014).Wanga, G., Zhua, Y., Chena, L. & Zhanga, X. Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Biosens. Bioelectron. 63, 552–557 (2015).Laptenko, O. et al. The p53 C Terminus Controls Site-Specific DNA Binding and Promotes Structural Changes within the Central DNA Binding Domain. Molec. Cell. 57, 1034–1046 (2015).McKeague, M. & DeRosa, M. C. Challenges and Opportunities for Small Molecule Aptamer Development. J. Nucleic Acids. 2012, 1–20 (2012).McKeague, M. et al. Analysis of In Vitro Aptamer Selection Parameters, J. Mol. Evol. 81, 150–161 (2015).Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 346, 818–822 (1990).Wochner, A. et al. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal Biochem. 373, 34–42 (2008).Song, K. M., Jeong, E., Jeon, W., Cho, M. & Ban, C. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal. Bioanal. Chem. 402, 2153–2161 (2012).Özalp, V. C. & Schäfer, T. Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chem. Eur. J. 17, 9893–9896 (2011).Stojanovic, M. N., de Prada, P. & Landry, D. W. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J. Am. Chem Soc. 123, 4928–4931 (2001).Wen, Y. et al. DNA-based intelligent logic controlled release systems. Chem. Commun. 48, 8410–8412 (2012).Chen, L. et al. Programmable DNA switch for bioresponsive controlled release. J. Mater. Chem. 21, 13811–13816 (2011).Oroval, M. et al. An aptamer-gated silica mesoporous material for thrombin detection. Chem. Commun. 49, 5480–5482 (2013).Barroso, M., Gallardo, E. & Queiroz, J. A. Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis. 1, 977–1000 (2009).Phan, H. M., Yoshizuka, K., Murry, D. J. & Perry, P. J. Drug testing in the workplace. Pharmacotherapy. 32, 649–656 (2012).Kidwell, D. A., Blanco, M. A. & P. Smith, F. P. Cocaine detection in a university population by hair analysis and skin swab testing. Forensic Sci. Int. 84, 75–86 (1997).Swensen, J. S. et al. Continuous, Real-Time Monitoring of Cocaine in Undiluted Blood Serum via a Microfluidic, Electrochemical Aptamer-Based Sensor. J. Am. Chem. Soc. 131, 4262–4266 (2009).Cai, Q. et al. Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor. Anal. Bioanal. Chem. 400, 289–294 (2011).Zou, R. et al. Highly specific triple-fragment aptamer for optical detection of cocaine. RSC Adv. 2, 4636–4638 (2012).Qiu, L. et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New J. Chem. 37, 3998 (2013).Marsal, L. F., Vojkuvka, L., Formentin, P., Pallarés, J. & Ferré-Borrull, J. Fabrication and Optical Characterization of Nanoporous Alumina Films Annealed at Different Temperatures. Optical Mater. 31, 860–864 (2009).Bosker, W. M. & Huestis, M. A. Oral Fluid Testing for Drugs of Abuse. Clinical Chem. 55, 1910–1931 (2009).Kolbrich, E. A. et al. Cozart® RapiScan Oral Fluid Drug Testing System: An Evaluation of Sensitivity, Specificity, and Efficiency for Cocaine Detection Compared with ELISA and GC-MS Following Controlled Cocaine Administration. J. Anal Toxicol. 27, 407–411 (2003).Cooper, G., Wilson, L., Reid, C., Main, L. & Hand, C. Evaluation of the Cozart® RapiScan drug test system for opiates and cocaine in oral fluid. Forensic Sci. Int. 150, 239–243 (2005).Chang, Y. H. et al. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip. 12, 3020–3023 (2012).Walczak, R. et al. Toward Portable Instrumentation for Quantitative Cocaine Detection with Lab-on-a-Paper and Hybrid Optical Readout. Procedia Chem. 1, 999–1002 (2009).Qiu, L. et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New J. Chem. 37, 3998–4003 (2013)
Reconciling the stratigraphy and depositional history of the Lycian orogen-top basins, SW Anatolia
Terrestrial fossil records from the SWAnatolian basins are crucial both for regional correlations and palaeoenvironmental reconstructions.
By reassessing biostratigraphic constraints and incorporating new fossil data, we calibrated and reconstructed the late Neogene
andQuaternary palaeoenvironments within a regional palaeogeographical framework. The culmination of the Taurides inSWAnatolia
was followed by a regional crustal extension from the late Tortonian onwards that created a broad array of NE-trending orogen-top
basins with synchronic associations of alluvial fan, fluvial and lacustrine deposits. The terrestrial basins are superimposed on the upper
Burdigalian marine units with a c. 7 myr of hiatus that corresponds to a shift from regional shortening to extension. The initial infill of
these basins is documented by a transition from marginal alluvial fans and axial fluvial systems into central shallow-perennial lakes
coinciding with a climatic shift from warm/humid to arid conditions. The basal alluvial fan deposits abound in fossil macro-mammals
of an early Turolian (MN11–12; late Tortonian) age. The Pliocene epoch in the region was punctuated by subhumid/humid conditions
resulting in a rise of local base levels and expansion of lakes as evidenced by marsh-swamp deposits containing diverse fossilmammal
assemblages indicating late Ruscinian (lateMN15; late Zanclean) ageWe are grateful for the support of the international
bilateral project between The Scientific and Technological Research
Council of Turkey (TUBITAK) and The Russian Scientific Foundation
(RFBR) with grant a number of 111Y192. M.C.A. is grateful to the
Turkish Academy of Sciences (TUBA) for a GEBIP (Young Scientist
Award) grant. T.K. and S.M. are grateful to the Ege University
Scientific Research Center for the TTM/002/2016 and TTM/001/2016
projects. M.C.A., H.A., S.M. and M.B. have obtained Martin and
Temmick Fellowships at Naturalis Biodiversity Center (Leiden). F.A.D.
is supported by a Mehmet Akif Ersoy University Scientific Research
Grant. T.A.N. is supported by an Alexander-von-Humboldt
Scholarship. L.H.O. received support from TUBITAK under the 2221
program for visiting scientists
Kıyı Alanlarının Rekreasyonel Amaçlı Alternatif Kullanımının Artvin Örneğinde İrdelenmesi
Geçmişten günümüze daima insanoğlunun ilgisini çeken kıyı alanları,
rekreasyonel kullanım ve etkinlik çeşitliliği açısından oldukça zengin kaynak
değerlerine sahiptir. Su kenarları, tarih boyunca yerleşim, ulaşım, rekreasyon
ve turizm gibi çeşitli kullanım amaçlarına hizmet ederek ilgili amaçlar
doğrultusunda planlanmış ve tasarlanmıştır. Bu bağlamda halkın kıyılardan aktif
ve serbestçe yararlanması ve kıyı alanlarının sürdürülebilir kullanımı ve
planlanmasına yönelik çalışmalar birçok araştırmanın hedefi olmuştur. Bu
çalışmanın amacı, Artvin ilinin Karadeniz kıyısında yer alan Hopa ve Arhavi
ilçelerine ait kıyı ve sahil şeridinin ilk bölümünde yer alan kullanımların
yasal ve teknik açıdan irdelenerek kıyıların rekreasyonel kullanım
potansiyelinin belirlenmesidir. Söz konusu çalışmada Artvin İli’ne ait toplamda
36,2 km olan kıyı bandı, idari sınırlar ve planlı/plansız alan durumu dikkate
alınarak yedi bölüm altında ele alınmıştır. Çalışmada materyal olarak, 1/1000
ölçekli onaylı Uygulama İmar Planları, dolgu alanlarına yönelik hazırlanan
planlar, 1/1000 ölçekli halihazır haritalar ve arazi çalışmalarıyla elde edilen
veriler ve fotoğraflar kullanılmıştır. Çalışma alanındaki mevcut kıyı kullanımlarının
belirlenmesi ve analizi ile haritaların üretilmesi ve düzenlenmesi sürecinde
ise ArcMap 10.2, Google Earth ve Photoshop CS6 programlarından
yararlanılmıştır. Yapılan tüm bu inceleme ve değerlendirmeler sonucunda,
çalışma alanındaki arazi yapısının elverişsiz koşullarının, kıyı alanını ve
dolayısıyla rekreasyonel kullanımı kısıtladığı,
kıyının ve kıyının tamamlayıcısı olan sahil şeridinin yanlış alan
kullanımlarına maruz kaldığı belirlenmiştir. Planlı alan kapsamındaki kıyı ve
sahil şeridinde rekreasyonel amaçlı kullanımların var olduğu, bununla birlikte
planlı alanların plansız alanlara nazaran daha çok yanlış kıyı kullanımlarına
maruz kaldığı tespit edilmiştir. Ayrıca çalışma alanındaki kıyı genişliğinin,
0,5m ile 215 m arasında değiştiği ve çoğunlukla dar kıyı niteliği taşıdığı
belirlenmiştir
Anomalous origin of the left circumflex coronary artery: A case report
The anomalous origin of the left circumflex coronary artery from the right sinus of Valsalva is a relatively common anatomical variation. Difficulties may occur in the diagnostic procedure, but recognition and adequate visualization of the anomaly is essential for proper patient management, especially in patients undergoing evaluation for percutaneous coronary intervention, coronary artery surgery or prosthetic valve replacement. In the present report, a patient who had undergone percutaneous coronary intervention for a right coronary artery lesion after inferior myocardial infarction is described. The anomalous origin of the left circumflex coronary artery arising independently from the right sinus of Valsalva was previously undetected. © 2007 Pulsus Group Inc. All rights reserved
- …