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Abstract. In this paper, we study expansions for the Dirac operator D,
the modified Dirac operator D − λ, and the polynomial Dirac operator
P (D) in super spinor space. These expansions are a meaningful gener-
alization of the classical Almansi expansion in polyharmonic functions
theory. As an application of the expansions, the generalized Riquier
problem in super spinor space is investigated.
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1. Introduction

In 2013, Coulembier constructed the spinor representation for the orthosym-
plectic superalgebra osp(m|2n),Sm|2n (see [5]), which generalizes the so(m)-
spinors (see [9]) and the symplectic spinors for sp(2n) (see [12]). Furthermore,
he studied the complete decomposition of a certain class of tensor product
representations for osp(m|2n). In [7], Coulembier and De Bie defined the
Dirac operator, acting on super functions defined on R

m|2n with values in
super spinor space Sm|2n, which generalizes the Cauchy-Riemann operators
by Stein and Weiss (see [19]). The Dirac operator is the natural extension
of both the classical Dirac operator, for the case n = 0, which acts on the
functions defined R

m with values in the orthogonal spinors Sm (see [8]), and
the symplectic Dirac operator, for the case m = 0, which acts on sp(2n) on
differential forms on R

2n with values in the symplectic spinors S0|2n (see [13]).
Moreover, they defined a Laplace operator in super spinor space and stud-
ied Fischer decomposition (that is, arbitrary polynomials can be decomposed
into a sum of products of the powers of the vector variable with spherical
monogenics). Based on their work, we investigate Almansi type expansions
in super spinor space.

In 1899, Almansi [1] proved the following remarkable statement: if f(x)
is a polyharmonic function of order m in a star-shaped domain Ω centered at
the origin of coordinates, then there exist single-valued harmonic functions
f0(x), . . . , fm−1(x) in Ω such that
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f(x) = f0(x) + |x|2f1(x) + · · · + |x|2(m−1)fm−1(x).

The expansion is the so-called Almansi expansion. Indeed the expansion
builds the relation between harmonic functions and polyharmonic functions,
which plays a central role in the study of polyharmonic functions. The re-
sult in the case of complex analysis, several complex variables, and Clifford
analysis have been well developed in [3,14,18]. More recent generalizations
of the result, for kernels of iterated differential operators, such as the iter-
ates of weighted Laplace and Helmholtz operators, can be found in [11,16].
In addition, the ideas of Almansi expansion is useful in the study of partial
differential equations and boundary value problems (see [2,4,15]). Most re-
cently, we have studied Almansi expansions for the Dirac operator and the
Laplace operator in superspace (see [17,20,21]). But as we know, up to now
there is no hint on the Almansi expansion for polynomial Dirac operator
in spinor space. We try to fill part of this gap. In this paper, we mainly
study expansions for the modified Dirac operator D − λ, and the polynomial
Dirac operator P (D) in super spinor space. Furthermore, we investigate the
generalized Riquier problem in super spinor space by the expansion for the
operator D − λ.

2. Preliminaries

2.1. Z2-Graded Algebra

The flat supermanifold, which contains m commuting (bosonic) and 2n anti-
commuting (fermionic) co-ordinates, is denoted by R

m|2n. The superalgebra
(Z2-graded algebra)of functions on this flat supermanifold R

m|2n is

O(Rm|2n) = C∞(Rm) ⊗ Λ2n,

where Λ2n is the Grassmann algebra generated by 2n anti-commuting vari-
ables, denoted by x̀i.

The supervector x is defined to be

x = (X1, . . . , Xm+2n) = (x, x̀) = (x1, . . . , xm, x̀1, . . . , x̀2n).

The first m variables are commuting and the last 2n variables are anti-
commuting. The commutation relations are then summarized in

XiXj = (−1)[i][j]XjXi, i, j = 1, . . . , m + 2n,

where [i] = 0 if i = m and [i] = 1 otherwise.
The algebra generated by the variables Xj is denoted by P and is iso-

morphic to the supersymmetric tensor power of Cm|2n. The partial derivatives
are defined by the relation

∂Xj
Xk = δjk + (−1)[j][k]Xk∂Xj

.
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2.2. Super Spinor Space Sm|2n

The orthosymplectic metric g ∈ R
(m+2n)×(m+2n) is given in block-matrix

form by

g =

(
Im 0
0 J2n

)

with

J2n =

(
0 In

−In 0

)
.

The real orthosymplectic Lie superalgebra osp(m|2n) can be defined as
the subsuperalgebra of gl(m|2n;R) that preserves this metric.

The spinors Sm|2n for the orthosymplectic superalgebra osp(m|2n), as
osp(m|2n)-modules, satisfy Sm|2n

∼= Λd|n, where the complex algebra Λd|n is
generated by {θ1, . . . , θd, t1, . . . , tn} subject to the relations

θjθk = −θkθj , 1 ≤ j, k ≤ d, titl = tlti, 1 ≤ i, l ≤ n,

and

θjti = −tiθj , 1 ≤ j ≤ d, 1 ≤ i ≤ n.

This algebra Λd|n is a superalgebra with unusual gradation. The com-
muting variables are considered as odd and the Grassmann variables are even.
With this gradation the algebra is in fact a super anti-commutative algebra,
ab = −(−1)|a||b|ba for a, b two homogeneous elements of the superalgebra.
Therefore this corresponds to a supersymmetric version of a Grassmann al-
gebra.

2.3. Differential Operators in Super Spinor Space

The super gradient ∇ : O(Rm|2n) → O(Rm|2n) ⊗ C
m|2n is defined by

∇f =
m+2n∑
i=1

(−1)[i](1+|f |)∂Xi
f ⊗ Ei, Ei = (0, . . . , 0, 1, 0, . . . , 0)

for O(Rm|2n) homogeneous.
The super vector space morphism E⊥ : Cm|2n ⊗ Sm|2n → Sm|2n defined

by

E⊥(Ek ⊗ υ) =
m+2n∑

l=1

(El · υ)glk

is a osp(m|2n)-module morphism.
The Dirac operator in super spinor space D is given by

Df = ∂xf = E⊥(∇f) =
m+2n∑
i,j=1

gijEi(∂Xj
f)

for f ∈ O(Rm|2n) ⊗ Sm|2n.
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The null solutions of the super Dirac operator are called super mono-
genic functions. The null solutions of the operator Dk are called k-super
monogenic functions.

Besides, we define the Euler operator in super spinor space as

E =
m+2n∑
i=1

Xi∂Xi
.

Note that EPk = kPk, where Pk denote the polynomials of degree k.

3. An Expansion for the Operator D

Definition 3.1. We define the generalized super-Euler operator by

Us = sI + E = sI +
m+2n∑
i=1

Xi∂Xi
, (3.1)

where s is a complex number, I is the identity operator and E is the Euler
operator in super spinor space.

Lemma 3.2. [7] The operators x,x2, ∂x,E show the following properties:

x∂x + ∂xx = −2E − M, (3.2)
xE − Ex = −x, (3.3)
∂xE − E∂x = ∂x, (3.4)

where x =
∑m+2n

i=1 XiEi.

Applying Lemma 3.2, we can obtain the following lemma.

Lemma 3.3. Let O(Rm|2n) = C2(Rm) ⊗ Λ2n. For f(x) ∈ O(Rm|2n) ⊗ Sm|2n,{
D(x2sf(x)) = −2sx2s−1f(x) + x2sDf(x),

D(x2s−1f(x)) = −2x2(s−1)
UM

2 +s−1f(x) − x2s−1Df(x).

Lemma 3.4. Let O(Ωm|2n) = C2(Ω) ⊗ Λ2n. For f(x) ∈ O(Ωm|2n) ⊗ Sm|2n,

DUsf(x) = Us+1Df(x), (3.5)

where s ∈ C.

Proof. Using Definition 3.1 and (3.4), we have the conclusion. �

Definition 3.5. An open connected set Ω ⊂ Rm is a star domain with center
0 if x ∈ Ω and 0 ≤ t ≤ 1 imply that tx ∈ Ω. The set is denoted by Ω�.

Definition 3.6. Let O(Ωm|2n
∗ ) = C(Ω∗) ⊗ Λ2n. The operator Js is defined as

Js : O(Ωm|2n
∗ ) ⊗ Sm|2n → O(Ωm|2n

∗ ) ⊗ Sm|2n,

Jsf(x) =

1∫
0

f(tx)ts−1dt,

where s > 0.
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Lemma 3.7. Let O(Ωm|2n
∗ ) = C1(Ω∗) ⊗ Λ2n. For f(x) ∈ O(Ωm|2n

∗ ) ⊗ Sm|2n,

UsJsf(x) = JsUsf(x) = f(x). (3.6)

Proof. Using Definitions 3.1 and 3.6, we have

JsUsf(x) =

1∫
0

Usf(tx)ts−1dt

=

1∫
0

(s + E)f(tx)ts−1dt

=

1∫
0

[
sf(tx)ts−1 +

m+2n∑
i=1

Xi∂Xi
f(tx)ts−1

]
dt

=

1∫
0

[
sf(tx)ts−1 +

m+2n∑
i=1

Xi
∂f(tx)
∂tXi

ts

]
dt

=

1∫
0

d

dt
(f(tx)ts)dt

= f(x).

Similarly, we have

UsJsf(x) = f(x).

�

Theorem 3.8. Let O(Ωm|2n
∗ ) = Ck(Ω∗) ⊗ Λ2n. If f(x) ∈ O(Ωm|2n

∗ ) ⊗ Sm|2n

satisfies the equation Dkf = 0, then there exist unique super monogenic func-
tions f0, · · · , fk−1 such that

f(x) = f0(x) + xf1(x) + x2f2(x) + · · · + x(k−1)fk−1(x), (3.7)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fk−1(x) =
(−1)k−1

2k−1
[

k−1
2

]
!
JM

2 +[ k−1
2 ]−1 · · · JM

2
D(k−1)f(x),

fk−2(x) =
(−1)k−2

2k−2
[

k−2
2

]
!
JM

2 +[ k−2
2 ]−1 · · · JM

2
D(k−2)[f(x) − x(k−1)fk−1(x)],

...

f1(x) =
−1
2

JM
2

D[f(x) − x2(k−1)fk−1(x) − · · · − x2f2(x)],

f0(x) = [f(x) − x2(k−1)fk−1(x) − x4f2(x) − · · · − x2f1(x)].
(3.8)

Conversely, if functions f0, . . . , fk−1 are super monogenic, then the function
f(x) given by (3.7) is k-super monogenic.
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Proof. First we will prove that

Dl[xlg(x)] = (−1)l2l

[
l

2

]
!UM

2
· · ·UM

2 +[ l
2 ]−1g(x), (3.9)

where g(x) ∈ O(Ωm|2n
∗ ) ⊗ Λ2n ⊗ Sm|2n is super monogenic. By Lemma 3.3,

for the case l = 2k,

D2k[x2kg(x)] = D(2k−1)D[x2kg(x)]

= D2(k−1)D[−2kx2k−1g(x) + x2kDg(x)]

= −2kD2(k−1)[−2x2(k−1)
UM

2 +k−1g(x) − x2s−1Dg(x)]

= 22kD2(k−1)x2(k−1)
UM

2 +k−1g(x)
= · · ·
= 22kk!UM

2
· · ·UM

2 +k−1g(x).

For the case l = 2k − 1,

D2k−1[x2k−1g(x)] = D2(k−1)D[x2k−1g(x)]

= D2(k−1)[−2x2(k−1)
UM

2 +k−1g(x) − x2k−1Dg(x)]

= −2D2(k−1)[x2(k−1)
UM

2 +k−1g(x)]

= 2 · 22(k−1)(k − 1)!UM
2

· · ·UM
2 +k−1g(x).

Thus, we obtain the expansion Eq. (3.9).
Secondly, if we let the operator Dk−1 act on the Eq. (3.7), then

Dk−1f(x) = D(k−1)

(
k−1∑
i=0

(xifi(x)

)

= D(k−1)
(
(xk−1fk−1(x)

)
= (−1)k−12k−1

[
k − 1

2

]
!UM

2
· · ·UM

2 +[ k−1
2 ]−1fk−1(x).

By Lemma 3.7, we have

fk−1(x) =
(−1)k−1

2k−1
[

k−1
2

]
!
JM

2 +[ k−1
2 ]−1 · · · JM

2
D(k−1)f(x).

Similarly, we let the operator D(k−2) act on f(x)−x(k−1)fk−1(x), we obtain

D(k−2)[f(x) − x(k−1)fk−1(x)]

= D(k−2)

(
k−2∑
i=0

xifi(x)

)

= D(k−2)
(
xk−2fk−2(x)

)
= (−1)k−22k−2

[
k − 2

2

]
!UM

2
· · ·UM

2 +[ k−2
2 ]−1fk−2(x).
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From Lemma 3.7, we have

fk−2(x) =
(−1)k−2

2k−2
[

k−2
2

]
!
JM

2 +[ k−2
2 ]−1 · · · JM

2
D(k−2)[f(x) − x(k−1)fk−1(x)].

By induction, we have (3.8).
Conversely, suppose that the functions f1, · · · , fk−1 are super mono-

genic. Using (3.9) and Lemma 3.4, we have

Dkf(x) = Dk

[
k−1∑
i=0

xifi(x)

]
= 0,

which means that the function f(x) given by (3.7) is k-super monogenic. �

4. An Expansion for the Operator Dλ

Definition 4.1. We define the generalized super-Dirac operator by

Dλ = ∂x − λ,

where ∂x is the super Dirac operator and λ is a complex number.

Denote kerDk
λ = {f |(D−λ)kf = 0, f ∈ Ck(Ω)⊗Λ2n ⊗Sm|2n, k ∈ N}.

Lemma 4.2. If f ∈ ker(Dλ), then

CkDk
λU

k
λf = f, (4.1)

where Ck = 1
k!λk and k ∈ N.

Proof. Note that f ∈ ker(Dλ). For k = 1, by Lemma 3.4, we observe that

DλUλf = (∂x − λ)Uλf

= ∂xUλf − λUλf

= Uλ+1∂xf − λUλf

= Uλ+1∂xf − λUλ+1f + λf

= Uλ+1(∂x − λ)f + λf

= λf.

Suppose that for k = l,

ClD
l
λU

l
λf = f,

where Cl = 1
l!λl . For k = l + 1,

Dl+1
λ U

l
λf = DλDl

λU
l
λf =

1
Cl

Dλf = 0.

We calculate

Dl+1
λ U

l+1
λ f = Dl

λDλUλU
l
λf

= Dl
λ(Uλ+1Dλ + λ)Ul

λf

= Dl
λUλ+1DλU

l
λf + λDl

λU
l
λf

= Dl−1
λ DλUλ+1DλU

l
λf +

λ

Cl
f
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= Dl−1
λ Uλ+2D

2
λU

l
λf +

2λ

Cl
f

= · · ·
= Uλ+l+1D

l+1
λ U

l
λf +

(l + 1)λ
Cl

f

=
1

Cl+1
f.

Thus, we have the conclusion. �

Theorem 4.3. If f(x) ∈ kerDk
λ, then there exist unique functions f0, . . . ,

fk−1 ∈ kerDλ such that

f(x) = f0(x) + Uλf1(x) + U
2
λf2(x) + · · · + U

k−1
λ fk−1(x), (4.2)

where f0, . . . , fk−1 are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f0(x) = (I − C1UλDλ)
(
I − C2U

2
λD2

λ

) · · · (I − Ck−1U
k−1
λ Dk−1

λ

)
f(x),

f1(x) = C1Dλ

(
I − C2U

2
λD2

λ

) · · · (I − Ck−1U
k−1
λ Dk−1

λ

)
f(x),

...
fk−2(x) = Ck−2D

k−2
λ (I − Ck−1U

k−1
λ Dk−1

λ )f(x),

fk−1(x) = Ck−1D
k−1
λ f(x),

(4.3)

and Ck = 1
k!λk .

Conversely, if functions f0, . . . , fk−1 ∈ kerDλ, then the function f(x)
given by (4.3) satisfies the equation Dk

λf = 0.

Proof. If we let the operator Dk−1
λ act on the Eq. (4.2), then by Lemma 4.2,

we have

Dk−1
λ f(x) = Dk−1

λ

(
f0(x) +

k−1∑
i=1

(Uλ)ifi(x)

)

= Dk−1
λ U

k−1
λ fk−1(x)

=
1

Ck−1
fk−1(x).

Thus,

fk−1(x) = Ck−1D
k−1
λ f(x).

Similarly, if we let the operator Dk−2
λ act on f(x) − U

k−1
λ fk−1(x), we have

Dk−2
λ [f(x) − U

k−1
λ fk−1(x)]

= Dk−2
λ

(
f0(x) +

k−2∑
i=1

U
i
λfi(x)

)

= Dk−2
λ U

k−2
λ fk−2(x)

=
1

Ck−2
fk−2(x).
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So

fk−2(x) = Ck−2D
k−2
λ (I − Ck−1U

k−1
λ Dk−1

λ )f(x).

By induction, we have (4.3).
Conversely, suppose that the functions f0, . . . , fk−1 ∈ kerDλ. Applying

Lemma 4.2, we obtain

Dk
λf(x) = Dk

λ

[
f0(x) +

k−1∑
i=1

(Uλ)ifi(x)

]
= 0,

which completes the proof. �

5. Expansions for the Operator P (D)

Let the polynomial

P (λ) = λk + b0λ
k−1 + · · · + bk−1, (5.1)

with bl ∈ C, and l = 0, . . . , k − 1. Then the polynomial Dirac operator in
super spinor space is defined as

P (D) = Dk + b0D
k−1 + · · · + bk−1. (5.2)

Denote ker P (D) = {f |P (D)f = 0, f ∈ Ck(Ω) ⊗ Λ2n ⊗ Sm|2n}.
If P (λ) has the decomposition

P (λ) = (λ − λ0)n0 · · · (λ − λl−1)nl−1 , (5.3)

where λi ∈ C, and λi 	= 0, i = 0, . . . , l − 1, then the operator P (D) has the
decomposition

P (D) = (D − λ0)n0 · · · (D − λl−1)nl−1 . (5.4)

Lemma 5.1. [10] Let π(λ) =
∏l−1

k=0(λ − λk)nk be a polynomial of λ, with
λk ∈ C, nk ∈ N, and n0 + · · · + nl−1 = s. Then

1
π(λ)

=
l−1∑
k=0

nk∑
j=1

1
(nk − j)!

[
dnk−j

dλnk−j

(λ − λk)nk

π(λ)

]
λ=λk

1
(λ − λk)j

. (5.5)

Lemma 5.2. If P (D) in (5.2) has the decomposition (5.4), then

kerP (D) = kerDn0
λ0

⊕ · · · ⊕ kerD
nl−1
λl−1

, (5.6)

where kerDni

λi
= {f |(D − λi)nif = 0, f ∈ Cni(Ω) ⊗ Λ2n ⊗ Sm|2n}.

Proof. By Lemma 5.1, we have

kerP (D) = kerDn0
λ0

+ · · · + kerD
nl−1
λl−1

,

inspired by Gong [10].
Then it is easy to prove that

kerP (D) = kerDn0
λ0

⊕ · · · ⊕ kerD
nl−1
λl−1

by the division algorithm. �
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Theorem 5.3. If f(x) ∈ kerP (D), then there exist unique functions fi,j ∈
kerDλi

, i = 0, . . . , l − 1, j = 0, . . . , ni − 1, such that

f =
l−1∑
i=0

fi,0 +
l−1∑
i=0

ni−1∑
j=1

U
j
λfi,j , (5.7)

where fi,0, . . . , fi,ni−1 are given as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fi,0(x) = (I − C1UλDλ)
(
I − C2U

2
λD2

λ

) · · · (I − Cni−1U
ni−1
λ Dni−1

λ

)
f(x),

fi,1(x) = C1Dλ

(
I − C2U

2
λD2

λ

) · · · (I − Cni−1U
ni−1
λ Dni−1

λ

)
f(x),

...
fi,ni−2(x) = Cni−2D

ni−2
λ (I − Cni−1U

ni−1
λ Dni−1

λ )f(x),

fi,ni−1(x) = Cni−1D
ni−1
λ f(x),

(5.8)

and Ck = 1
k!λk .

Proof. Note that P (D)f = 0. It follows by Lemma 5.2 that there exist unique
functions fi, i = 0, . . . , l − 1 such that

f = f0 + f1 + · · · + fl−1,

where fi ∈ kerDni

λi
.

Theorem 4.3 implies that there exist unique functions fi,j , i = 0, . . . , l−
1, j = 1, . . . , ni − 1, such that

fi = fi,0 +
ni−1∑
j=1

U
j
λfi,j ,

where fi,j are given in Theorem 4.3.
Then the proof is completed. �

If P (λ) has the decomposition

P (λ) = (λ − 0)n0(λ − λ1)n1 · · · (λ − λk)nk , (5.9)

where λi ∈ C, and λi 	= 0, i = 1, . . . , k, the polynomial Dirac operator in
super spinor space P (D) has the decomposition

P (D) = Dn0(D − λ1)n1 · · · (D − λk)nk . (5.10)

Applying Theorems 4.3 and 5.3, we obtain the following theorem:

Theorem 5.4. If f(x) ∈ kerP (D), then there exist unique functions f0,l ∈
kerD, l = 1, . . . , n0, and fi,j ∈ kerDλi

, i = 1, . . . , k, j = 0, . . . , ni − 1 such
that

f =
n0∑
l=1

xl−1f0,l +
k∑

i=1

fi,0 +
k∑

i=1

ni−1∑
j=1

U
j
λfi,j , (5.11)
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where fi,0, . . . , fi,ni−1 are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

fi,0(x) = (I − C1UλDλ)
(
I − C2U

2
λD2

λ

) · · · (I − Cni−1U
ni−1
λ Dni−1

λ

)
f(x),

fi,1(x) = C1Dλ

(
I − C2U

2
λD2

λ

) · · · (I − Cni−1U
ni−1
λ Dni−1

λ

)
f(x),

...
fi,ni−2(x) = Cni−2D

ni−2
λ (I − Cni−1U

ni−1
λ Dni−1

λ )f(x),

fi,ni−1(x) = Cni−1D
ni−1
λ f(x),

(5.12)

with Ck = 1
k!λk , and f0,l, l = 1, . . . , n0 are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0,1(x) = f(x) − xn0−1fn0−1(x) − · · · − xf0,2(x),

f0,2(x) = −1
2 JM

2
D[f(x) − xn0−1f0,n0−1(x) − · · · − x2f0,3(x)],

...
f0,n0−1(x)

= (−1)n0−1

2n0−1[n0−1
2 ]!JM

2 +[n0−1
2 ]−1

· · · JM
2

Dn0−2[f(x) − x(n0−1)f0,n0(x)],

f0,n0(x) = (−1)n0

2n0 [n0
2 ]!JM

2 +[n0
2 ]−1 · · · JM

2
Dn0−1f(x),

(5.13)

6. Generalized Riquier Problem in Super Spinor Space

In this section, we investigate the generalized Riquier problem in super spinor
space by an expansion for the operator Dk

λ, as follows:
Given gi(y) ∈ C (∂Ω) ⊗ Λ2n ⊗ Sm|2n, find a function f such that Di

λf ∈
C(Ω) ⊗ Λ2n ⊗ Sm|2n for i = 0, · · · , k − 1, and{

Dk
λf = 0, f ∈ Ck(Ω) ⊗ Λ2n ⊗ Sm|2n,

Di
λf |∂Ω = gi(y).

(6.1)

Theorem 6.1. Suppose that fi(x), i = 0, · · · , k − 1, satisfy the following equa-
tions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dλfi(x) = 0, fi(x) ∈ C2i+1(Ω) ⊗ Λ2n ⊗ Sm|2n,

fi(x)|∂Ω =
1

i!λi

⎡
⎣gi(y) −

k−1∑
j=i+1

Di
λU

j
λfj(x)|∂Ω

⎤
⎦ , i = 0, · · · , k − 2,

fi(x) ∈ C(Ω) ⊗ Λ2n ⊗ Sm|2n, Di
λU

j
λfj(x) ∈ C(Ω) ⊗ Λ2n ⊗ Sm|2n,

fk−1(x)|∂Ω =
1

(k − 1)!λk−1
gk−1(y), fk−1(x) ∈ C(Ω) ⊗ Λ2n ⊗ Sm|2n.

(6.2)

Then the function f(x) given by

f(x) =
k−1∑
i=0

U
i
λfi(x) = f0(x) +

k−1∑
i=1

U
i
λfi(x), (6.3)

is a solution of the problem (6.1).
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Proof. Let fi(x) ∈ C2i+1(Ω) ⊗ Λ2n ⊗ Sm|2n, i = 0, · · · , k − 1. Because the
functions fi(x) satisfy the equations Dλfi(x) = 0, it follows by Theorem 4.3
that

Dk
λf(x) = 0,

where f(x) is given in (6.3). For 0 ≤ i < k − 1, Lemma 4.2 implies that

Di
λf(x) = Di

λ

⎛
⎝f0(x) +

k−1∑
j=1

U
j
λfj(x)

⎞
⎠

= i!λifi(x) +
k−1∑

j=i+1

Di
λU

j
λfj(x). (6.4)

Note that fi(x) ∈ C(Ω)⊗Λ2n ⊗Sm|2n and Di
λU

j
λfj(x) ∈ C(Ω)⊗Λ2n ⊗Sm|2n.

Then Di
λf(x) ∈ C(Ω) ⊗ Λ2n ⊗ Sm|2n.

For i = k − 1,

Dk−1
λ f(x) = Dk−1

λ

⎛
⎝f0(x) +

k−1∑
j=1

U
j
λfj(x)

⎞
⎠ = (k − 1)!λk−1fk−1(x). (6.5)

Because fk−1(x) ∈ C(Ω) ⊗ Λ2n ⊗ Sm|2n, it follows that Dk−1
λ f(x) ∈

C(Ω) ⊗ Λ2n ⊗ Sm|2n.
Letting x → ∂Ω, and using the second equality and the third equality

in (6.2), we have

Di
λf |∂Ω = gi(y), i = 0, . . . , k − 1.

Thus, we have the conclusion. �
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