240 research outputs found

    A free boundary tumor model with time dependent nutritional supply

    Get PDF
    A non-autonomous free boundary model for tumor growth is studied. The model consists of a nonlinear reaction diffusion equation describing the distribution of vital nutrients in the tumor and a nonlinear integro-differential equation describing the evolution of the tumor size. First the global existence and uniqueness of a transient solution is established under some general conditions. Then with additional regularity assumptions on the consumption and proliferation rates, the existence and uniqueness of steady-state solutions is obtained. Furthermore the convergence of the transient solutions toward the steady-state solution is verified. Finally the long time behavior of the solutions is investigated by transforming the time-dependent domain to a fixed domain.Ministerio de Economía y Competitividad (MINECO). EspañaEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)Junta de AndalucíaNational Natural Science Foundation of ChinaSimons Foundatio

    Optical Identification of Cepheids in 19 Host Galaxies of Type Ia Supernovae and NGC 4258 with the Hubble Space Telescope

    Get PDF
    We present results of an optical search for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC 4258, conducted as part of the SH0ES project (Supernovae and H0 for the Equation of State of dark energy). The targets include 9 newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SN Ia hosts, that yielded a total of 2200 variables with well-defined selection criteria -- the largest such sample identified outside the Local Group. These objects are used in a companion paper to determine the local value of H0 with a total uncertainty of 2.4%.Comment: ApJ, in press. v2 adds missing co-author to arXiv metadata and text in acknowledgment

    Analysis and mitigation of DC voltage imbalance for medium-voltage cascaded three-level neutral-point-clamped converters

    Get PDF
    The cascaded three-level neutral-point-clamped (3L-NPC) converter and the modular multi-level converter (MMC) are attractive solutions for medium-voltage direct-current (MVDC) applications. Due to their low cost compared to MMCs, cascaded 3L-NPC converters have been adopted in ANGLE-DCa 30 MVA MVDC link demonstration project in North Wales, UK. DC voltage imbalance across submodules (SMs) is a common challenge for both types of MVDC converters. Such imbalance is topology dependent and remains under-researched for cascaded 3L-NPC converters. In this paper, small-signal model-based analysis has been done to reveal that the dc voltage imbalance in cascaded 3L-NPC converters is caused by an unstable system pole. Two voltage balancing methods are presented. The first method is based on PI controllers to precisely regulate SMs voltages without influencing output power. However, it relies on communication between a central controller and local controllers within SMs. The second method uses inverse-droop based control to take over the dc voltage regulation upon loss of communication. Both balancing methods are experimentally validated using a 30 kVA testbed based on the ANGLE-DC project. It has been demonstrated that the dc voltages of SMs can be effectively balanced with both methods during changes of load conditions and dc bus voltages

    Demonstration of Converter Control Interactions in MMC-HVDC Systems

    Get PDF
    Although the control of modular multi-level converters (MMCs) in high-voltage direct-current (HVDC) networks has become a mature subject these days, the potential for adverse interactions between different converter controls remains an under-researched challenge attracting the attention from both academia and industry. Even for point-to-point HVDC links (i.e., simple HVDC systems), converter control interactions may result in the shifting of system operating voltages, increased power losses, and unintended power imbalances at converter stations. To bridge this research gap, the risk of multiple cross-over of control characteristics of MMCs is assessed in this paper through mathematical analysis, computational simulation, and experimental validation. Specifically, the following point-to-point HVDC link configurations are examined: (1) one MMC station equipped with a current versus voltage droop control and the other station equipped with a constant power control; and (2) one MMC station equipped with a power versus voltage droop control and the other station equipped with a constant current control. Design guidelines for droop coefficients are provided to prevent adverse control interactions. A 60-kW MMC test-rig is used to experimentally verify the impact of multiple crossing of control characteristics of the DC system configurations, with results verified through software simulation in MATLAB/Simulink using an open access toolbox. Results show that in operating conditions of 650 V and 50 A (DC voltage and DC current), drifts of 7.7% in the DC voltage and of 10% in the DC current occur due to adverse control interactions under the current versus voltage droop and power control scheme. Similarly, drifts of 7.7% both in the DC voltage and power occur under the power versus voltage droop and current control scheme.This work was supported by the EU FP7 program, through the project “BEyond State of the art Technologies for re-Powering AC corridors and multi-Terminal HVDC Systems” (BEST-PATHS), grant agreement 612748. The simulation toolbox can be downloaded from the project website at www.bestpaths-project.eu (accessed on 10 December 2021)

    SiC-based improved neutral legs with reduced capacitors for three-phase four-wire EV chargers

    Get PDF
    An electric vehicle (EV) charger can operate in an autonomous mode to create its own grid by utilizing the EV batteries during grid blackouts. This requires three-phase four-wire inverters as the grid-side ac/dc port of the EV charger to supply unbalanced loads. Although silicon carbide (SiC) MOSFETs can be adopted to increase the power density of these inverters, the second order ripples exhibited on the dc bus caused by unbalanced loads need to be mitigated by a large dc capacitance—increasing the size of inverters. In this paper, an improved neutral leg for three-phase four-wire inverters is presented, which not only provides the neutral current for unbalanced loads like a conventional neutral leg, but also reduces the second order ripples on the dc bus without the need for additional hardware components. Furthermore, it can reduce by 50% the dc capacitance compared to its conventional counterpart. A control strategy featuring power decoupling capability is included for the improved leg. It was built with SiC MOSFETs and experimentally assessed with a three-phase inverter, with results verifying its effectiveness. For completeness, the performance of the improved neutral leg is also evaluated through simulations in PLECS and compared to a conventional neutral leg

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team

    Full text link
    We report observations from HST of Cepheids in the hosts of 42 SNe Ia used to calibrate the Hubble constant (H0). These include all suitable SNe Ia in the last 40 years at z1000 orbits, more than doubling the sample whose size limits the precision of H0. The Cepheids are calibrated geometrically from Gaia EDR3 parallaxes, masers in N4258 (here tripling that Cepheid sample), and DEBs in the LMC. The Cepheids were measured with the same WFC3 instrument and filters (F555W, F814W, F160W) to negate zeropoint errors. We present multiple verifications of Cepheid photometry and tests of background determinations that show measurements are accurate in the presence of crowding. The SNe calibrate the mag-z relation from the new Pantheon+ compilation, accounting here for covariance between all SN data, with host properties and SN surveys matched to negate differences. We decrease the uncertainty in H0 to 1 km/s/Mpc with systematics. We present a comprehensive set of ~70 analysis variants to explore the sensitivity of H0 to selections of anchors, SN surveys, z range, variations in the analysis of dust, metallicity, form of the P-L relation, SN color, flows, sample bifurcations, and simultaneous measurement of H(z). Our baseline result from the Cepheid-SN sample is H0=73.04+-1.04 km/s/Mpc, which includes systematics and lies near the median of all analysis variants. We demonstrate consistency with measures from HST of the TRGB between SN hosts and NGC 4258 with Cepheids and together these yield 72.53+-0.99. Including high-z SN Ia we find H0=73.30+-1.04 with q0=-0.51+-0.024. We find a 5-sigma difference with H0 predicted by Planck+LCDM, with no indication this arises from measurement errors or analysis variations considered to date. The source of this now long-standing discrepancy between direct and cosmological routes to determining the Hubble constant remains unknown.Comment: 67 pages, 31 figures, replaced to match ApJ accepted version (March 2022), Table 6 distances included here, long form of photometry tables, fitting code, compact form of data, available from Github page, https://pantheonplussh0es.github.i
    corecore