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Abstract

A non-autonomous free boundary model for tumor growth is studied. The model
consists of a nonlinear reaction diffusion equation describing the distribution of
vital nutrients in the tumor and a nonlinear integro-differential equation describ-
ing the evolution of the tumor size. First the global existence and uniqueness
of a transient solution is established under some general conditions. Then with
additional regularity assumptions on the consumption and proliferation rates,
the existence and uniqueness of steady-state solutions is obtained. Furthermore
the convergence of the transient solutions toward the steady-state solution is
verified. Finally the long time behavior of the solutions is investigated by trans-
forming the time-dependent domain to a fixed domain.
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1. Introduction

Over the past decades, extensive studies have been done on free boundary
problems modeling the growth of tumors (see, e.g., [2, 4, 3, 6, 15, 16, 20, 21]).
In this paper we consider a spherically symmetric non-necrotic tumor in R3 and
study the concentration of a certain type of nutrient within the tumor. Let t5
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be the time variable scaled by the tumor-cell doubling time and r = |x| be the
spatial space variable scaled by the tumor-cell radius. Denote by u = u(r, t) the
scaled nutrient concentration at time t and radius r from the tumor center and
denote by R(t) the scaled tumor radius at time t. Then u = u(r, t) and R(t)
follow a system of coupled reaction diffusion and integro-differential equations10

[2, 10]:

µ
∂u(r, t)

∂t
= ∆ru(r, t)− f(u(r, t)) for 0 < r < R(t), t > 0, (1)

dR(t)

dt
=

1

R2(t)

∫ R(t)

0

g(u(r, t))r2dr for t > 0, (2)

where f(u) is the scaled consumption rate of the nutrient by tumor-cells in a
unit volume, g(u) is the scaled proliferation rate of tumor-cells in a unit volume
(i.e., the number of new-born cells minus the number of new-dying cells in a
unit volume within a unit time interval), and µ = Tdiffusion/Tgrowth is the ratio
of the nutrient diffusion time scale to the tumor growth (e.g. tumor doubling)
time scale. Note that typically Tdiffusion ≈ 1minute while Tgrowth ≈ 1 day,
so that µ � 1 (see, e.g., [1, 5, 19]). Also note that ∆r represents the radial
Laplacian, i.e.,

∆ru =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
.

Assume that the scaled concentration of the nutrient supplied on the tumor
surface is of level α and that the nutrient level does not change at the center of
the tumor, i.e.,

∂u

∂r
(0, t) = 0, u(R(t), t) = α for t > 0. (3)

In addition, let the initial size of the tumor and initial nutrient level within the
tumor be

R(0) = R0, u(r, 0) = u0(r) for 0 6 r 6 R0. (4)

The system (1)–(4) was proposed by Byrne and Chaplain in [2] for the growth
of a tumor consisting of live cells (non-necrotic tumor) and receiving blood
supply through a developed network of capillary vessels (vascularized tumor).
It was analyzed mathematically by Friedman and Reitich [13] for the linear case15

and by Cui [12] for the nonlinear case. See, e.g., [11, 9] and references therein
for other relevant literature.

We are interested in studying the above system with a time dependent nu-
trition supply on the tumor surface, i.e., the constant α in boundary conditions
(3) becomes a function of time α(t), i.e.,

∂u

∂r
(0, t) = 0, u(R(t), t) = α(t) for t > 0. (5)

The problem then becomes non-autonomous and consequently we change the
initial time to be t0 instead of 0 and revise the initial conditions to be

R(t0) = R0 > 0, u(r, t0) = u0(r) for 0 6 r 6 R0. (6)
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As far as we know, some relevant mathematical model has been investigated
when the nutrition supply α(t) on the tumor surface is periodic (see, e.g. [6, 16,
21]). When a Gibbs-Thmson relation is taken into account, Wu [20] established20

the existence and uniqueness of solutions of the tumor model for the linear case.

In this paper, we are interested in studying system (1)-(2) with general time
dependent nutritional supply α(t) on the tumor surface and general functions
f and g. Throughout this paper it is assumed that25

(A0) α(t) is continuously differentiable and bounded with

0 6 α 6 α(t) 6 ᾱ ∀ t > t0.

The aim of this work is to study the nonautonomous tumor growth system
(1)–(2) with (5)–(6), referred to as (NTS) in the sequel. The paper is organized
as follows. In Section 2 we introduce notation and present some preliminary
results. In Section 3 we establish the global existence and uniqueness of a
transient solution for (NTS) by constructing a functional metric space and a30

contraction mapping and then using the fixed point theorem. In Section 4 we
show the existence and uniqueness of a steady-state solution and further prove
the convergence of the transient solutions toward the steady-state solution by
the method of comparison and maximum principle with nontrivial mathematical
analysis. In Section 5 we investigate the asymptotic behavior of the solutions35

to (NTS) in a fixed domain in general situation. Some closing remarks will be
given in Section 6.

2. Preliminaries

Denote by | · | the Euclidean norm. Unless otherwise specified, given a space
Ω, Ω denotes the closure of Ω. Given T > t0 and R(t) > 0, denote

QR
T :=

{
(x, t) ∈ R3 × R : |x| < R(t), t ∈ (t0, T )

}
.

In particular,

QR0

T = BR0
× (t0, T ) where BR0

=
{
x ∈ R3 : |x| < R0

}
.

For p ≥ 1 and λ ∈ (0, 1) denote

W m,k
p (QR

T ) =
{
u ∈ L p(QR

T ) : ∂αx u(x, t), ∂ltu(x, t) ∈ L p(QR
T )

for |α| 6 m, l 6 k
}
,

C 2+λ,1+λ
2 (QR

T ) = the Hölder space on the parabolic domain QR
T .

Given p > 0 and α(t) > 0 define Dp,α(t)(BR0
) to be40

Dp,α(t)(BR0
) :=

{
v : there exists V ∈ W 2,1

p (QR0

T ) ∩ C 0(QR0

T ) such that

V (x, t) = α(t) for |x| = R0, t ∈ [t0, T ]

and V (x, t0) = v(x) for all |x| 6 R0

}
.
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Note that v ∈ Dp,α(t)(BR0) implies that v ∈ C 0(BR0) and v(x) = α(t) for all
|x| = R0. The norm on Dp,α(t)(BR0) is defined to be

‖v‖Dp,α(t)(BR0
) := inf

{
‖V ‖

W 2,1
p (Q

R0
T )

: V (x, t) = α(t) for |x| = R0, t ∈ [t0, T ]

and V (x, t0) = v(x) for all |x| 6 R0

}
.

Now consider the following auxiliary problem
µ
∂v

∂t
(x, t) = ∆v(x, t) + h(x, t) in QR

T ,

v(x, t) = α(t) for |x| = R(t), t0 6 t 6 T,

v(x, t0) = v0(x) for |x| 6 R0,

(7)

where µ and R0 are positive constants, R(·) ∈ C 1([t0, T ]) is a positive function,

h(·, ·) ∈ C 0(QR
T ), and v0 ∈ Dp,α(t0)(BR0

) for some
5

2
< p < ∞. Note that if

p >
5

2
then

W 2,1
p (Q1

T ) ⊂ C λ,λ2 (Q1
T ) with λ = 2− 5

p
;

if p > 5 then
‖∇u‖L∞(Q1

T ) 6 C(p, T )‖u‖W 2,1
p (Q1

T ).

The following results regarding system (7) will be used to study (NTS) later.

Lemma 2.1. Let (A0) hold. Then system (7) has a unique solution v ∈
W 2,1
p (QR

T ) ⊂ C 0(QR
T ). Moreover,

(i) there exists a constant C > 0 depending on µ, the upper bounds of R(t),
1

R(t) , |Ṙ(t)|, |α(t)|, |α̇(t)|, |h(x, t)| and ‖v0‖Dp,α(0)(BR0
), such that

‖v‖W 2,1
p (QRT ) 6 C.

If further p > 5 then
‖∇v‖L∞(QRT ) 6 C ′,

where C ′ is a constant similar to C.

(ii) If R(·) and α(·) ∈ C 1+λ
2 ([t0, T ]) and h(·, ·) ∈ C λ,λ2 (QR

T ) for some 0 < λ <45

1, then v ∈ C 2+λ,1+λ
2 (QR

T ).

(iii) If v0(x) and h(x, t) are radially symmetric in x, then v(x, t) is also radially
symmetric in x.
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Proof. Let w(x, t) = v(x, t)− α(t) + 1, then problem (7) is equivalent to
µ
∂w

∂t
(x, t) = ∆w(x, t) + h̃(x, t) in QR

T ,

w(x, t) = 1 for |x| = R(t), t0 6 t 6 T,

w(x, t0) = w0(x) for |x| 6 R0,

(8)

where h̃(x, t) = h(x, t) − µα̇(t) and w0(x) = v0(x) − α(t0) + 1. Clearly w0 ∈
Dp,1(BR0). The proof then follows directly by applying Lemma 2.1 in [10] to50

the above problem (8).

Lemma 2.2. Let (A0) hold and in addition assume that

(a) h(x, t) 6 0 for all (x, t) ∈ QR
T ;

(b) v0(x) 6 α for all |x| 6 R0.

Then v(x, t) 6 α for all (x, t) ∈ QR
T .55

Proof. Let w(x, t) = v(x, t)− α, then w(x, t) satisfies
µwt(x, t)−∆w(x, t) 6 0 in QR

T ,

w(x, t) 6 0 for |x| = R(t), t0 6 t 6 T,

w(x, t0) 6 0 for |x| 6 R0.

By the maximum principle, it follows that w(x, t) 6 0. Hence v(x, t) 6 α for all

(x, t) ∈ QR
T , which completes the proof.

Lemma 2.3. Let (A0) hold and in addition assume that there exists a constant
mv such that

(a) v0(x) > mv for all |x| 6 R0;60

(b) h(x, t) > 0 if v(x, t) 6 mv.

Then v(x, t) > mv for all (x, t) ∈ QR
T .

Proof. If there is no point (x, t) ∈ QR
T such that v(x, t) < mv, then the lemma

holds immediately. Otherwise, let Q̂R
T :=

{
(x, t) ∈ QR

T

∣∣ v(x, t) 6 mv

}
and let

w(x, t) = v(x, t)−mv (x, t) ∈ Q̂R
T .

Then by the continuity of v(x, t), there exist disjoint domains {Qj}= {Q̃j × Q̂j} ⊆
Q̂R
T with x ∈ Q̃j , t ∈ Q̂j and on each Qj , w(x, t) satisfies

µwt(x, t) = ∆w(x, t) + h(x, t) in Qj ,

w(x, t) = 0 for x ∈ ∂Q̃j , t0 6 t 6 T,

w(x, t0) 6 0 for x ∈ Q̃j .
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We next show that on each Qj , w(x, t) achieves minimum value on ∂Qj so that
w(x, t) ≡ 0 on Qj .

Notice that h(x, t) ≥ 0 on each Qj . Below we discuss the cases h(x, t) > 065

and h(x, t) = 0, respectively.

(1) h(x, t) > 0 on Qj : suppose (for contradiction) that there exists (x0, τ) ∈
Qj\∂Qj , i.e., in the interior of Qj , such that

w(x0, τ) = min
(x,t)∈Qj

w(x, t) < 0.

Then wt(x, t)|(x0,τ)60 and ∆w(x, t)|(x0,τ) > 0. As a result

h(x0, τ) = µwt(x, t)|(x0,τ) −∆w(x, t)|(x0,τ) 6 0,

which contradicts with h(x, t) > 0 in Qj . Thus the minimum of w(x, t) in
each Qj is achieved on the boundary of Qj .

(2) h(x, t) = 0 onQj : for every (x, t) ∈ Qj with x = (x1, x2, x3) and t ∈ [t0, T ],
let

w̃(x, t) = w(x, t)− εex1 for ε > 0.

Then

h̃(x, t) := µw̃t(x, t)−∆w̃(x, t) = h(x, t) + εex1 = εex1 > 0.

It then follows from part (1) that w̃(x, t) achieves minimum on ∂Qj . Let-
ting ε→ 0 we obtain that the minimum of w(x, t) in each Qj is achieved70

on the boundary of Qj .

In summary w(x, t) ≡ 0 in each Qj and by the definition of Qj , w(x, t) ≥ 0

for all (x, t) ∈ QR
T , i.e.,

v(x, t) > mv for all (x, t) ∈ QR
T .

The proof is complete.

Remark 2.1. In the present paper, we take in particular mv = 0.

3. Existence and uniqueness of solution

In this section we establish the existence and uniqueness of solutions for the75

problem (NTS). In addition to assumption (A0) throughout this section it is
also assumed that

(A1) there exists Lα > 0 such that |α̇(t)| 6 Lα for all t ≥ t0.

(A2) u0 ∈ W 2,0
∞ (0, R0) and satisfies u′0(0) = 0, u0(R0) = α(t0) and 0 6 u0(r) 6

α for all r ∈ [0, R0].80
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(A3) f(0) = 0 and f : R → R is nondecreasing and Lipschitz continuous with
Lipschitz constant Lf > 0.

(A4) g : R→ R is Lipschitz continuous with Lipschitz constant Lg > 0.

Theorem 3.1. Let assumptions (A0)-(A4) hold. Then the problem (NTS) has
a unique solution (u(r, t), R(t)). Moreover, the solution satisfies

0 6u(r, t) 6 α for 0 6 r 6 R(t), t > t0, (9)

1

3
mg 6

Ṙ(t)

R(t)
6

1

3
Mg for t > t0, (10)

R0e
1
3mg(t−t0) 6R(t) 6 R0e

1
3Mg(t−t0) for t > t0, (11)

where mg and Mg are two constants defined by (14)

Proof. The proof is similar to that of Theorem 2.2 in [10] with a considerable85

number of modifications. For the reader’s convenience we present the complete
proof below in three steps.
Step I (Existence and uniqueness of a local solution).

Given any T > t0 and M > 0 (large enough), define a metric space (ST ,d)
as follows:90

(i) ST= S̃T × ŜT :=
{(
u(·, ·), R(·)

) ∣∣u(·, ·) ∈ S̃T , R(·) ∈ ŜT

}
with R(t) and

u(r, t) satisfy, respectively:

• R(·) ∈ C [t0, T ], R(t0) = R0 and

R0e
1
3mg(t−t0) 6 R(t) 6 R0e

1
3Mg(t−t0) for t0 < t 6 T ; (12)

• u(·, ·) ∈ W 1,0
∞ ([0,∞)× [t0, T ]) ∩ C ([0,∞)× [t0, T ]) and

u(r, t) 6M for 0 6 r 6 R(t), t0 6 t 6 T,

u(r, t) = α(t) for r > R(t), t0 6 t 6 T,

u(r, t0) = u0(r) for 0 6 r 6 R0,

(ii) d((u1, R1), (u2, R2)) := max
r>0

t06t6T

|u1(r, t)− u2(r, t)|+ max
t06t6T

|R1(t)−R2(t)|.

It is straightforward to check that (ST ,d) is a complete metric space.
Given any (u(r, t), R(t)) ∈ ST , let R∗(t;R0) = R∗(t) be the unique solution

of the following problem dR∗(t)

dt
=

R∗(t)

R3(t)

∫ R(t)

0

g(u(r, t))r2dr, t0 6 t 6 T,

R∗(t0) = R0,
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which gives, by direct computation,

R∗(t) = R0e
∫ t
t0
G(θ)dθ

where G(t) =
1

R3(t)

∫ R(t)

0

g(u(r, t))r2dr. (13)

Since (u(r, t), R(t)) ∈ ST , u(r, t) is bounded, which ensures that g(u(r, t)) is
bounded for every r > 0 and t0 6 t 6 T , write

mg := min
u∈S̃T

g(u), Mg := max
u∈S̃T

g(u), (14)

and then

mg

3
6 G(t) 6

Mg

3
for t0 6 t 6 T. (15)

Consequently

R0e
1
3mg(t−t0) 6 R∗(t) 6 R0e

1
3Mg(t−t0) for t0 6 t 6 T. (16)

Observing that R∗(·) ∈ C 1([t0, T ]) and R∗ > 0, due to Lemma 2.1 there exists
a unique solution u∗(x, t) for the following problem

µu∗t = ∆u∗ − f(u(|x|, t)), |x| < R∗(t), t0 < t 6 T,

u∗(x, t) = α(t), |x| = R∗(t), t0 < t 6 T,

u∗(x, t0) = u0(|x|), |x| 6 R0.

Moreover, u∗ ∈ W 2,1
p (QR∗

T ) for any
5

2
< p < ∞ which is radially symmetric in

x (so we write u∗ = u∗(r, t)). Since f(u(|x|, t)) > 0, it then follows from the
assumptions (A0), (A2) and Lemma 2.2 that u∗(r, t) 6 α for all 0 6 r 6 R∗(t)
and t0 6 t 6 T . Note that u∗(r, t) can be extended to [0,∞)× [t0, T ] such that u∗(r, t) 6 α for 0 6 r 6 R∗(t), t0 6 t 6 T,

u∗(r, t) = α(t) for r > R∗(t), t0 6 t 6 T.

Now choose M = α in (i). Then clearly (u∗(·, ·), R∗(·)) ∈ ST . Define a
mapping Θ : ST → ST by

Θ : (u(·, ·), R(·)) 7→ (u∗(·, ·), R∗(·)). (17)

We next verify that Θ is a contraction mapping for suitable small (T − t0). To95

this end consider (ui(·, ·), Ri(·)) ∈ ST and (u∗i (·, ·), R∗i (·)) = Θ(ui(·, ·), Ri(·)) for
i = 1, 2. From (13), (14) and (15) we can deduce that for any t ∈ [t0, T ],∣∣R∗1(t)−R∗2(t)

∣∣ = R0

∣∣e∫ tt0 G1(θ)dθ − e
∫ t
t0
G2(θ)dθ∣∣

6 R0(T − t0)e
1
3Mg(T−t0) · max

t06θ6T

∣∣G1(θ)−G2(θ)
∣∣,
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where Gi(θ) =
1

R3
i (θ)

∫ Ri(θ)

0

g(ui(r, θ))r
2dr, i = 1, 2. Then due to the Lipschitz

condition on g we have∣∣G1(θ)−G2(θ)
∣∣

=

∣∣∣∣∫ 1

0

[
g(u1(R1r, θ))− g(u2(R2r, θ))

]
dr

∣∣∣∣
6Lg

∫ 1

0

|u1(R1r, θ)− u2(R2r, θ)|dr

6Lg

∫ 1

0

|u1(R1r, θ)− u2(R1r, θ)|dr + Lg

∫ 1

0

|u2(R1r, θ)− u2(R2r, θ)|dr

6Lg max
r>0
|u1(r, θ)− u2(r, θ)|

+ Lg ess sup
06ξ6max{R1,R2}

|∂u2

∂r
(ξ, θ)|

∫ 1

0

|R1(θ)−R2(θ)|rdr

6Lg max
r>0
|u1(r, θ)− u2(r, θ)|+ CLg|R1(θ)−R2(θ)|

and hence∣∣R∗1(t)−R∗2(t)
∣∣ 6 R0(T − t0)e

1
3Mg(T−t0) · C(T ) · d

(
(u1, R1), (u2, R2)

)
=: (T − t0)C(T )d

(
(u1, R1), (u2, R2)

)
. (18)

Next, we estimate
∣∣u∗1(r, t)− u∗2(r, t)

∣∣. To this end, define

R∗m(t) := min{R∗1(t), R∗2(t)}, R∗M (t) := max{R∗1(t), R∗2(t)},

w(x, t) =u∗1(|x|, t)− u∗2(|x|, t), |x| 6 R∗m(t), t0 6 t 6 T,

h(x, t) =f(u1(|x|, t))− f(u2(|x|, t)), x ∈ R3, t0 6 t 6 T.

Then, w(x, t) satisfies
µwt = ∆w − h(x, t) in Q

R∗m
T ,

w(x, t) = w(x, t) for |x| = R∗m(t), t0 < t 6 T,

w(x, t0) = 0 for |x| 6 R0.

(19)

Let w̃ = w̃(x, t), x ∈ R3, t ∈ [t0, T ] be the solution of the following initial value
problem {

µw̃t = ∆w̃ − h(x, t) in R3 × [t0, T ],

w̃(x, t0) = 0 for x ∈ R3,
(20)
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and let w∗ = w∗(x, t) = w(x, t) − w̃(x, t), |x| 6 R∗m(t), t ∈ [t0, T ]. Then w∗

satisfies
µw∗t = ∆w∗ in Q

R∗m
T ,

w∗(x, t0) = w(x, t)− w̃(x, t) for |x| = R∗m(t), t0 < t 6 T,

w∗(x, t0) = 0 for |x| 6 R0.

Applying the maximum principle to w∗ on Q
R∗m
T , we obtain

max
Q
R∗m
T

|w∗(x, t)| 6 max
|x|=R∗m(t),
t06t6T

|w(x, t)− w̃(x, t)|

6 max
t06t6T

|u∗1(R∗m(t), t)− u∗2(R∗m(t), t)|+ sup
R3×[t0,T ]

|w̃(x, t)|.

Observe that

max
06r6R∗m(t)
t06t6T

|u∗1(r, t)− u∗2(r, t)| = max
Q
R∗m
T

|w| 6 max
Q
R∗m
T

|w̃|+ max
Q
R∗m
T

|w∗|

62 sup
R3×[t0,T ]

|w̃|+ max
t06t6T

|u∗1(R∗m(t), t)− u∗2(R∗m(t), t)|.

Therefore,

max
r>0

t06t6T

|u∗1(r, t)− u∗2(r, t)| 6 2 sup
x∈R3

t06t6T

|w̃(x, t)|+ max
R∗m(t)6r6R∗M (t)

t06t6T

|u∗1(r, t)− u∗2(r, t)|.

(21)

It follows from (20) and assumption (A3) that

sup
x∈R3

t06t6T

|w̃(x, t)| 6 1

µ
(T − t0) sup

x∈R3

t06t6T

|h(x, t)| (22)

6
Lf
µ

(T − t0) max
06r

t06t6T

|u1(r, t)− u2(r, t)|

6
Lf
µ

(T − t0)d
(
(u1, R1), (u2, R2)

)
. (23)

For the second term on the right-hand side of (21), based on Lemma 2.1, Lemma
2.2 and the Sobolev spatial embedding relationship

W 2,1
p (QR

T ) ↪→ C q, q2 (QR
T ) for 0 6 q < 2− 5

p
,

10



we obtain that for every t ∈ [t0, T ] and r ∈ [R∗m(t), R∗M (t)] it holds

|u∗1(r, t)− u∗2(r, t)| 6 |u∗1(r, t)− α(t)|+ |u∗2(r, t)− α(t)|

=|u∗1(r, t)− u∗1(R∗1(t), t)|+ |u∗2(r, t)− u∗2(R∗2(t), t)|

6

(
sup

06ξ6R∗1(t)

∣∣∂u∗1
∂r

(ξ, t)
∣∣+ sup

06ξ6R∗2(t)

∣∣∂u∗2
∂r

(ξ, t)
∣∣) · ∣∣R∗1(t)−R∗2(t)

∣∣
6C
∣∣R∗1(t)−R∗2(t)

∣∣
for some C > 0. Therefore

max
R∗m(t)6r6R∗M (t),

t06t6T

|u∗1(r, t)− u∗2(r, t)| 6 C(T ) · max
t06t6T

|R∗1(t)−R∗2(t)|, (24)

where C(T ) depends on µ and the upper bounds of R∗(t),
1

R∗(t)
, |Ṙ∗(t)|, |α(t)|,

|α̇(t)|, but not on the choice of (u1, R1) and (u2, R2). Substituting (23) and (24)
into (21) and using (18), we obtain

max
06r,

t06t6T

|u∗1(r, t)− u∗2(r, t)| 6 (T − t0)C(T )d((u1, R1), (u2, R2)),

which together with (18) implies that

d((u∗1, R
∗
1), (u∗2, R

∗
2)) 6 (T − t0)C(T )d((u1, R1), (u2, R2)).

Therefore, Θ defined in (17) is a contraction mapping for suitable small (T − t0)
satisfying (T − t0)C(T ) < 1. According to Banach fixed point theorem, we
conclude that there exists a fixed point (u(r, t), R(t)) which is the local unique100

solution of the problem (NTS) with t ∈ [t0, T ].

Step II (A priori estimates of the solution (u(r, t), R(t)))
Based on comparison results Lemma 2.2 and Lemma 2.3, it is not difficult to

check that 0 and α are respectively a lower and an upper solution of the system
(1), (5) and (6). Consequently, we have the estimate (9). Furthermore, (10)105

and (11) follow from (13), (15) and (16).

Step III (The global existence of solution)
Suppose (for contradiction) that the maximal existence time interval [t0, T1)

is finite, i.e. T1 < +∞. From (10) and (11), we see that R(t),
1

R(t)
and Ṙ(t)

are bounded in [t0, T1]. Evidently, |α(t)|, |α̇(t)| and ‖u0‖Dp,α(0)(BR0
) are also110

bounded in [t0, T1]. In addition, from (9), it follows that

|f(u(r, t))| = |f(u(r, t))− f(0)| 6 Lf |u(r, t)− 0| 6 2αLf , t ∈ [t0, T1].

Therefore, based on Lemma 2.1, we can deduce that

‖u‖W 2,1
p (QRT1

) <∞ for
5

2
< p <∞.

11



Moreover, from the arguments in Step I, for any τ ∈ [t0, T1), we can deduce
that there exists a time T2 > 0 such that a solution of the problem (NTS)
exists in the time interval [τ, τ + T2]. By the uniqueness of the solution, we can
conclude the existence time interval can be extended to [t0, T1 +T2), which is in115

contradiction to the assumption. Thus the the solution exists globally in time.
The proof is complete.

4. Steady-state solutions

In this section, we consider the case that the nutritional supply α(t) on
the tumor surface eventually becomes stable. The purpose of this section is to120

study the asymptotic behavior of the transient solutions (u(r, t), R(t)) obtained
in Theorem 3.1 as α(t)→ αs (a constant and, clearly, αs ∈ [α, α]). To this end,
we first prove the existence and uniqueness, then investigate its asymptotic
stability of the steady-state solution of (NTS) with nutritional supply α(t) ≡ αs
on the tumor surface.125

4.1. Existence and uniqueness of a steady-state solution

This subsection is devoted to the existence and uniqueness of a solution
(us(r), Rs) for the following steady-state form of (NTS):

∆rus = f(us(r)), 0 < r < Rs,

u′s(0) = 0, us(Rs) = αs,

1

R2
s

∫ Rs

0

g(us(r))r
2dr = 0,

(25)

where αs is a constant in the interval [α, ᾱ]. To this end, the following additional
regularity conditions on f and g are needed:

(A5) f ∈ C 1(R), f(0) = 0 and f ′(u) > 0 for all u ∈ R;

(A6) g ∈ C 1[0,+∞), g′(u) ∈ [0, Lg] for all u > 0; and there exists a unique130

α∗ > 0 such that g(α∗) = 0 but g does not identically equal zero on any
interval.

Remark 4.1. Note that the quantity α∗ is critical to the analysis in the sequel.
It plays the role as a threshold for different types of behavior of the solutions.

First consider the following auxiliary problem
∆rU(r, λ) = λf(U(r, λ)), 0 < r < 1,

∂U

∂r
(0, λ) = 0, U(1, λ) = αs,

(26)

where λ is a nonnegative parameter.135

The lemma below is similar to Lemma 3.1 in [10], with slight improvements.
But for the reader’s convenience we still provide full proof.
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Lemma 4.1. Assume (A5) hold. Then for any λ > 0, there exists a unique
solution U = U(r, λ) for problem (26). Moreover,

(i) the solution satisfies

0 6U(r, λ) 6 αs for 0 6 r 6 1, λ > 0, (27)

0 6
∂U

∂r
(r, λ) 6

λ

3
rf(αs) for 0 6 r < 1, λ > 0. (28)

(ii) U(r, λ) is continuously differentiable with respect to λ for all 0 6 r 6
1, λ > 0, and

−1

6
f(αs) 6

∂U

∂λ
(r, λ) < 0 for 0 < r < 1, λ > 0. (29)

(iii) U(r, 0) = αs for 0 6 r 6 1, and

lim
λ→∞

U(r, λ) =

{
0, for 0 6 r < 1,

αs, for r = 1.
(30)

Proof. First, it is clear that 0 and αs are a pair of lower and upper solutions
for system (26), from which the existence of a solution U satisfying (27) follows
by using the upper and lower solution method. In addition, the uniqueness
of the solution U is a consequence of the monotonicity of f . Since ∆rU =
1

r2

∂

∂r
(r2 ∂U

∂r
), integrating the first equation in (26) with respect to r leads to

∂U

∂r
(r, λ) =

λ

r2

∫ r

0

f(U(ρ, λ))ρ2dρ, (31)

which together with (27) and the nonnegativity and monotonicity of the function140

f yield (28). Thus, the assertion (i) holds.

Next, differentiating (26) with respect to λ and writing W (r, λ) =
∂U

∂λ
(r, λ),

we obtain 
∆rW = λf ′(U)W + f(U), 0 < r < 1,

∂W

∂r
(0, λ) = 0, W (1, λ) = 0.

Thanks to f(U) > 0, λf ′(U) > 0, and it follows from the maximum principle
(see [14]) that W (r, λ) < 0 for all 0 6 r < 1 and all λ > 0. Therefore,

∆rW 6 f(U) 6 f(αs) for 0 < r < 1.

Integrating the above inequality gives

W (r, λ) > −f(αs)

6
+
f(αs)

6
r2 > −f(αs)

6
for 0 < r < 1,

13



i.e., the assertion (ii) follows.
Finally, we verify the assertion (iii). Integrating (31) with respect to r over

[r, 1] gives∫ 1

r

∂U

∂θ
dθ = U(1, λ)− U(r, λ) = αs − U(r, λ)

=λ

∫ 1

r

1

θ2

∫ θ

0

f(U(ρ, λ))ρ2dρdθ = −λ

[∫ 1

r

∫ θ

0

f(U(ρ, λ))ρ2dρd(
1

θ
)

]

=− λ
[∫ 1

0

f(U(ρ, λ))ρ2dρ− 1

r

∫ r

0

f(U(ρ, λ))ρ2dρ−
∫ 1

r

θ · f(U(θ, λ))dθ

]
.

Hence,

U(r, λ) =αs + λ

∫ 1

0

f(U(ρ, λ))ρ2dρ− λ

r

∫ r

0

f(U(ρ, λ))ρ2dρ− λ
∫ 1

r

f(U(ρ, λ))ρdρ

=αs − λ(
1

r
− 1)

∫ r

0

f(U(ρ, λ))ρ2dρ− λ
∫ 1

r

f(U(ρ, λ))ρ(1− ρ)dρ. (32)

In particular, U(r, 0) = αs. From the boundedness and monotonicity of U(r, λ)
with respect to λ, we can conclude that lim

λ→∞
U(r, λ) exists point-wise.

For each r > 0, denote

U∗(r) = lim
λ→∞

U(r, λ).

Now, dividing (32) by λ and letting λ→∞, we get

(1

r
− 1
) ∫ r

0

f(U∗(ρ))ρ2dρ+

∫ 1

r

f(U∗(ρ))ρ(1− ρ)dρ = 0, 0 < r < 1,

which implies that f(U∗(r)) = 0 a.e. on [0, 1]. Further, U∗(r) = 0 a.e. on [0, 1].145

Since U∗(r) is a monotonically nondecreasing function on (0, 1), (30) holds. The
proof is complete.

Now we introduce a function F (R) as follows

F (R) :=

∫ 1

0

g(U(r,R2))r2dr for R > 0. (33)

Then we have the following two lemmas, which can be proved in the same way
as Lemma 3.2 and Lemma 3.3 in [10], so we omit the proof here.

Lemma 4.2. Under the assumption (A5), problem (25) has a solution (us(r), Rs)
with Rs > 0 if and only if the function F (R) has a positive root Rs. Moreover
the solution us(r) of (25) is given by

us(r) = U
( r
Rs

, R2
s

)
for 0 6 r 6 Rs. (34)
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Lemma 4.3. Suppose that the assumptions (A5) – (A6) hold. Then150

(i) F ′(R) < 0 for all R > 0.

(ii) F (0) =
1

3
g(αs) and lim

R→∞
F (R) =

1

3
g(0).

Furthermore, as a consequence of Lemma 4.2 and Lemma 4.3 and recalling
that α∗ is defined such that g(α∗) = 0, we have

Theorem 4.1. Under the assumptions (A5) – (A6), the following assertions155

hold:

(i) If αs 6 α∗, then the problem (1)-(2)-(5) has no steady-state solution sat-
isfying (25).

(ii) If αs > α∗, then the problem (1)-(2)-(5) has a unique steady-state solution
(us(r), Rs) satisfying (25), where Rs is the unique positive root of the160

function F (R), and us(r) is given by (34).

4.2. The asymptotic stability of steady-state solutions

The main purpose of this subsection is to show the asymptotic stability
of steady-state solutions in the sense of the transient solution (u(r, t), R(t))
obtained in Theorem 3.1 toward the steady-state solution (us(r), Rs) with Rs >165

0 obtained in Theorem 4.1 under the assumption that αs > α∗. Thus throughout
this subsection it is assumed that αs > α∗. In addition, we assume that

(A7) given αs > α∗, there exist a continuous function Mα(t) satisfying Mα(t)→
0 over time such that

|α(t)− αs| 6 µMα(t)

Throughout this subsection denote by (u(r, t), R(t)) the solution of system
(NTS) and let

v(r, t) := U
( r

R(t)
, R2(t)

)
, 0 6 r 6 R(t), t > t0, (35)

where U(r, λ) is the solution of system (26).

Lemma 4.4. Let (A5) and (A7) hold and in addition assume that given any
T > t0, there exist LR > 0, m

R
> 0 and MR > 0 such that

|Ṙ(t)| 6 LR and m
R
6 R(t) 6MR, for t0 6 t < T. (36)

Then exist µ1 > 0 and C:= C(mR,MR, αs) such that

|u(r, t)− v(r, t)| 6 C, ∀ r ∈ [0, R(t)], t ∈ [t0, T ] and µ ∈ (0, µ1].
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Proof. First according to the definition of v, it satisfies
∆rv(r, t) = f(v(r, t)) for 0 < r < R(t), t > t0,

∂v

∂r
(0, t) = 0, v(R(t), t) = αs for t > t0.

(37)

Observe that

∂v

∂t
=

(
2
∂U

∂λ
− ∂U

∂r
· r

R3(t)

)
·R(t) · Ṙ(t),

from Lemma 4.1 and (36), it follows that∣∣∂v
∂t

∣∣ 6 CLR for 0 < r < R(t), t > t0, (38)

where the constant C depends on m
R

, MR and αs.
Now for any ε > 0 arbitrarily small, define `f := 1

2 infu∈R f
′(u) + ε and let

u±(r, t) = v(r, t)± CLR`−1
f µ± αe−

`f (t−t0)

µ .

Notice that by assumption (A5), `f > 0. Then by (37)-(38), it follows that if

µ(u−)t −∆ru− + f(u−)

=µvt + `fαe
−
`f (t−t0)

µ −∆rv + f
(
v(r, t)− CLR`−1

f µ− αe−
`f (t−t0)

µ
)

6µCLR + `fαe
−
`f (t−t0)

µ − f(v) + f
(
v(r, t)− CLR`−1

f µ− αe−
`f (t−t0)

µ
)
.

Notice that due to the boundedness of v, f ′(u) > 0 for all u lies in between

v(r, t) and v(r, t)− CLR`−1
f µ− αe−

`f (t−t0)

µ . Pick ε > 0 small enough such that
f ′(u) ≥ `f , then

µ(u−)t −∆ru− + f(u−) 6 µCLR + `fαe
−
`f (t−t0)

µ − `f (CLR`
−1
f µ+ αe−

`f (t−t0)

µ )

= 0 for 0 < r < R(t), t > t0.

Since |u0(r)− v(r, t0)| 6 α for 0 6 r 6 R0 and by assumption (A7) we have

u−(R(t), t) = v(R(t), t)− CLR`−1
f µ− αe−

`f (t−t0)

µ

= αs − CLR`−1
f µ− αe−

`f (t−t0)

µ

6 α(t) + µMα(t)− CLR`−1
f µ.

Then taking C such that C >
`f
LR
· max
t∈[t0,∞)

Mα(t) gives immediately


∂u−
∂r

(0, t) = 0, u−(R(t), t) 6 α(t), t > t0,

u−(r, t0) 6 u0(r), 0 6 r 6 R0.
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Therefore, by comparison, we conclude that

u−(r, t) 6 u(r, t) for 0 6 r 6 R(t), t0 6 t 6 T.

Similarly, we have

u+(r, t) > u(r, t) for 0 6 r 6 R(t), t0 6 t 6 T.

Then, for any 0 6 r 6 R(t), t0 6 t 6 T , it follows from the above two
inequalities that

−CLR`−1
f µ− ᾱe−

`f (t−t0)

µ 6 u(r, t)− v(r, t) 6 CLR`
−1
f µ+ ᾱe−

`f (t−t0)

µ ,

which yields the desired assertion.170

Lemma 4.5. Let assumptions (A5)–(A7) hold. Then given any R0 > 0 there
exists a constant µ2 > 0 such that

1

2
min{R0, Rs} < R(t) < 2 max{R0, Rs} (39)

for all t > t0 and µ ∈ (0, µ2].

Proof. First note that since R0 > 0, 1
2R0 < R0 < 2R0 and by continuity of

R(t), (39) holds for a certain period of time. Suppose (for contradiction) that
there exists T > t0 such that (39) holds for t0 6 t < T , but fails at t = T , i.e.,

either R(T ) = 2 max{R0, Rs} or R(T ) =
1

2
min{R0, Rs}.

Without loss of generality, we assume that R(T ) = 2 max{R0, Rs} := KT .
Clearly, we have

Ṙ(T ) > 0. (40)

Moreover, it follows from (10) that there exists a constant LR (the same as that
in Lemma 4.4) satisfying

|Ṙ(t)| 6 R(t)

3
max{|mg|, |Mg|} 6 LR, ∀ t0 6 t 6 T. (41)

Now we can use Lemma 4.4 to conclude that there exists a positive constant C0

(independent of µ) such that, for all 0 < µ 6 µ1,

|u(r, t)− v(r, t)| 6 C0

(
µ+ e−

`f (t−t0)

µ
)

for 0 6 r 6 R(t), t0 6 t 6 T. (42)

Let L̃g = max
06u6α

g′(u) > 0, then it follows from the above inequality that

g(u(r, t))− g(v(r, t)) 6 L̃gC0

(
µ+ e−

`f (t−t0)

µ
)

17



for all 0 6 r 6 R(t), t0 6 t 6 T and 0 < µ 6 µ1. Consequently,

Ṙ(t) =
1

R2(t)

∫ R(t)

0

g(u(r, t))r2dr

6
1

R2(t)

∫ R(t)

0

g(v(r, t))r2dr +
1

3
L̃gC0(µ+ e−

`f (t−t0)

µ ) ·R(t)

=R(t)F (R(t)) +
1

3
L̃gC0(µ+ e−

`f (t−t0)

µ ) ·R(t) for t0 6 t 6 T. (43)

In particular,

Ṙ(T ) 6R(T )

(
F (R(T )) +

1

3
L̃gC0(µ+ e−

`f (T−t0)

µ )

)
=KT

(
F (KT ) +

1

3
L̃gC0(µ+ e−

`f (T−t0)

µ )

)
.

From (11), we see that

KT = R(T ) 6 R0e
1
3Mg(T−t0),

which gives

T − t0 >
3

Mg
log(

KT

R0
) >

3 log 2

Mg
.

Hence

Ṙ(T ) 6KT

(
F (KT ) +

1

3
L̃gC0

(
µ+ e

−
`f
µ ·

3 log 2
Mg

))
=KT

(
F (KT ) +

1

3
L̃gC0

(
µ+ 2

−
3`f
µMg

))
. (44)

Further, we can deduce that there exists a constant µ̃1 > 0 such that

1

3
L̃gC0

(
µ+ 2

−
3`f
µMg

)
6

1

2
|F (KT )| for all µ 6 µ̃1. (45)

On the other hand, by Lemmata 4.2 and 4.3, we see that F (Rs) = 0 and F (·)
is a monotone decreasing function. Since KT > 2Rs > Rs, so we can obtain

F (KT ) < 0,

which together with (44) and (45) implies

Ṙ(T ) < 0 for all µ 6 µ̃1.

Therefore, taking µ2 = min{µ1, µ̃1}, we get a contradiction to (40) for all µ ∈
(0, µ2]. The proof is complete.
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With the above lemmata and Lemma 4.4 in [10] we can state the main result
of this subsection.175

Theorem 4.2. Let assumptions (A0)–(A2) and (A5)–(A7) hold. Then given
any R0 > 0 there exist corresponding positive constants C, γ and Mµ such that

|R(t)−Rs| < Ce−γ(t−t0), |Ṙ(t)| < Ce−γ(t−t0), |u(r, t)− us(r)| < Ce−γ(t−t0).

for every µ ∈ (0,Mµ], t > t0 and 0 6 r 6 R(t).

Proof. First due to Lemma 4.5, there exists a constant µ2 > 0 such that

min{1

2
R0 −Rs,−

1

2
Rs} < R(t)−Rs < max{2R0 −Rs, Rs},

for every µ ∈ (0, µ2], which implies that

|R(t)−Rs| 6 2R0 +Rs := β1, |R(t)| 6 2R0 + 2Rs, ∀ t > t0. (46)

Then it follows from (10) that

|Ṙ(t)| 6 2

3
(R0 +Rs) max{|mg|, |Mg|} := β2, for t > t0.

Moreover,

|u(r, t)− us(r)| 6 2α := β3, ∀ 0 6 r 6 R(t), t > t0

.
Let β := max{β1, β2, β3} and µ ≤ min{µ1, µ2, µ3}. It then follows directly

from Lemma 4.4 in [10] that there exist constants Ĉ > 0, θ > 0 and T0 > 0 such
that

|R(t)−Rs| 6 Ĉβ(µ+ e−θ(t−t0)) 6 2Ĉβµ for t > T0 + t0.

Similar estimates also hold for |Ṙ(t)| and |u(r, t)− us(r)| for t > T0 + t0. Then,
by successively applying Lemma 4.4 in [10] over [nT0 + t0,∞), we can obtain

|R(t)−Rs| 6 Ĉ(2Ĉµ)n−1β
(
µ+ e−θ[t−(n−1)T0−t0]

)
6 (2Ĉµ)nβ, t > nT0 + t0.

Define γ > 0 by 2Ĉµ = e−γT0(< 1). For any t > t0 let n be the largest
integer such that nT0 + t0 6 t < (n+ 1)T0 + t0, and set

Mµ := min
{
µ1, µ2, µ3,

1

2Ĉβ

}
, C := max

{
βeγT0 , Ĉ(Mµ + 1)β

}
.

We then conclude that for every µ ∈ (0,Mµ],

|R(t)−Rs| 6(2Ĉµ)nβ = β · e−γnT0 = βe−γte−γ(nT0−t)

<βe−γte−γ[nT0−(n+1)T0−t0] = βeγ(T0+t0)e−γt

=βeγT0e−γ(t−t0) 6 Ce−γ(t−t0), ∀t > t0.

Similarly |Ṙ(t)| < Ce−γ(t−t0) and |u(r, t) − us| < Ce−γ(t−t0) also hold. The
proof is complete.
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Remark 4.2. Theorem 4.2 implies the nutrient concentration and tumor size180

will evolve toward a dormant state if the nutritional supply α(t) becomes stable
as time goes on. Moreover, the exponential rate of convergence of the transient
solution (u(r,t),R(t)) to the steady-state solution (us(r), Rs) is obtained under
assumption (A7) with suitable Mα(t). In particular, we note that the conver-
gence rate of the transient solution (u(r, t), R(t)) to the steady-state solution185

(us(r), Rs) is restricted by the convergence rate of α(t) to αs over time.

5. Long time behavior of solutions: general case

In this section, we investigate the long term behavior of solutions to the
(NTS) system in other situations. To facilitate computations in the sequel,
we first transform the time-dependent domain QR

T into a fixed domain. In

particular, let y =
R0

R(t)
x where R0 = R(t0), and denote

ũ(y, t) = u

(
R(t)

R0
y, t

)
, ũ0(y) = u0(y).

Then the problem (NTS) can be transformed to the following problem in the
fixed spatial domain Ω0 := BR0

= {y ∈ R3 : |y| 6 R0}:

µ
∂ũ

∂t
(y, t) =

R2
0

R2(t)
∆ũ(y, t) + µ

Ṙ(t)

R(t)
(y · ∇ũ)− f(ũ(y, t)) for |y| < R0,

ũ(y, t) = α(t) for |y| = R0, t0 6 t,

dR(t)

dt
=
R(t)

R3
0

∫ R0

0

g(ũ(r))r2dr

R(t0) = R0, ũ(y, t0) = ũ0(y) for |y| 6 R0,

(47)

Note that based on the arguments in previous sections, the solution of prob-
lem (47) exists and satisfies the same estimates as those of the solution of
problem (NTS). Moreover, the solution ũ(y, t) is radially symmetric in y, so
throughout this section we write ũ(y, t) = ũ(|y|, t) = ũ(r, t) and set

mg := min
s∈[0,α]

g(s) and Mg := max
s∈[0,α]

g(s). (48)

Throughout the rest of this section, denote X := L 2[Ω0] and the norms in
X and H1[Ω0] are, respectively,

‖ · ‖ := ‖ · ‖L 2[Ω0] and ‖ · ‖H1 := ‖ · ‖H1[Ω0].

We will next investigate long term behavior of solutions (ũ(y, t), R(t)) of the
problem (47) in the domain X×R. In particular we first show that all solutions of
problem (47) with the same boundary conditions but different initial conditions190
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will converge to a singleton trajectory (û(y, t), R̂(t)) as t → ∞ (see Theorem
5.1 below). We then investigate the special case when Mg < 0, for which all
solutions converges to (α(t), 0) as t→∞ (see Theorem 5.2 below).

To that end, we first recall a Poincaré inequality

λ‖ϕ(t)‖2 6 ‖∇ϕ(t)‖2, ∀ϕ(y, t) ∈ H1
0 [Ω0], (49)

for some constant λ > 0. The following Lemma will be used in the proof of
Theorem 5.1.195

Lemma 5.1. Assume (A5) hold. Then the function F (u) := −f(u) satis-
fies a local one-sided dissipative Lipschitz condition, i.e., there exists a positive
constant L̃f such that

(u1 − u2) · (F (u1)− F (u2)) 6 −L̃f |u1 − u2|2 for all u1, u2 ∈ [0, α].

Proof. Due to assumption (A5), L̃f := min
u∈[0,α]

f ′(u) > 0 exists. Moreover, for

any u1, u2 ∈ [0, α], we see that (u1 − u2) · (f(u1)− f(u2)) > 0 and further

(u1 − u2) · (f(u1)− f(u2)) =
f(u1)− f(u2)

u1 − u2
(u1 − u2)2 > L̃f (u1 − u2)2.

The proof is complete.

Given any continuous function R(t) > 0, consider the following initial-
boundary value problem:

µ
∂û

∂t
=

R2
0

R2(t)
∆û+ µ

Ṙ(t)

R(t)
(y · ∇û)− f(û) for 0 < |y| < R0, t > t0,

û(R0, t) = α(t) for t > t0,

û(y, t0) = û0(y) for 0 6 |y| 6 R0.

(50)

Using the same arguments in Section 3, we conclude that the problem (50)

admits a unique solution ûR(y, t; t0, û0). Given two initial conditions û
(1)
0 (y)

and û
(2)
0 (y) define the difference

w(y, t) := ûR(y, t; t0, û
(1)
0 )− ûR(y, t; t0, û

(2)
0 ).

Then w satisfies the initial-boundary value problem
µ
∂w

∂t
=

R2
0

R2(t)
∆w + µ

Ṙ(t)

R(t)
(y · ∇w)− h for 0 < |y| < R0, t > t0,

w(R0, t) = 0 for t > t0,

w(y, t0) = w0(y) for 0 6 |y| 6 R0,

(51)

where h(y, t) = f(û
(1)
R )− f(û

(2)
R ) and w0(y) = û

(1)
0 (y)− û(2)

0 (y) for 0 6 |y| 6 R0.
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Multiplying (51) by w(y, t), integrating the resultant equality over Ω0 and
using Lemma 5.1, (10) and (49) yields

µ

2

d

dt
‖w(t)‖2 =− R2

0

R2(t)
‖∇w‖2 − 3µ

2

Ṙ(t)

R(t)
‖w‖2 −

∫
Ω0

h · wdy

6− λR2
0

R2(t)
‖w‖2 − 1

2
µmg‖w‖2 − L̃f‖w‖2.

Hence, under the condition −µmg < 2L̃f , there exists a positive constant ν such
that

‖w(t)‖2 6 ‖w0‖2e−ν(t−t0). (52)

In addition, from Theorem 3.1, it is not difficult to conclude that there exists
a pullback absorbing set of nonempty closed and bounded subsets {Bt : t ∈ R}
of L 2[Ω], which pullback absorbs all solutions ûR(t) of system (50). Thus the200

system (50) has a pullback attractor, [7]. It follows then by inequality (52) that
there is a single function û(y, t) for all t ∈ R, which solves the problem (50).
Moreover it attracts all other solutions ûR(t) of (50) as t→∞.

In particular, let R(t) be the solution of system (47) and ûR(y, t) be the
unique solution to the problem (50) obtained above. We next show that the205

singleton û(y, t) attracts all solutions of (47) as t→∞.

Theorem 5.1. Let assumptions (A0)–(A2), (A5) and (A6) hold. Then, there
exists constant µ0 > 0 and ν := ν(ν0) such that every solution (ũ(y, t), R(t)) of
problem (47) approaches (û(y, t), R(t)) in the sense that

‖ũ(·, t)− û(·, t)‖2 6 ‖ũ0(·)− û0(·)‖2e−ν(t−t0), ∀µ ∈ (0, µ0]. (53)

Moreover, if in addition α(t)→ αs as t→∞, then

(a) R(t)→ Rs as t→∞ if αs > α∗;

(b) R(t)→ 0 as t→∞ if αs < α∗.

Proof. The equality (53) follows directly from a comparison of equations in (50)210

and (47), and the inequality (52). The assertion (a) is a consequence of Theorem
4.2.

It remains to prove the assertion (b). Since α(t) → αs as t → ∞, so there
exist constants µ0 > 0 and t̃0 > t0 such that

α(t) < α∗ for all t > t̃0, µ 6 µ0,

which together with (A6) implies

M̃g := max
06u6max

t>t̃0

α(t)
g(u) < g(α∗) = 0.

By the same arguments as those used in section 3, we obtain

R(t) 6 R(t̃0) · e 1
3 M̃g(t−t0) → 0 as t→∞.

Thus the assertion (b) holds. The proof is complete.
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The ûR(t) constructed above can be regarded as a “limiting” trajectory that
attracts all solutions of (47) as time evolves. However, we did not have more215

details of ûR(t) in addition to its existence and uniqueness. In what below we
will discuss the special case when Mg < 0, for which the “limiting” trajectory
can be constructed explicitly.

The last main result reads:

Theorem 5.2. Let assumptions (A0)–(A4) hold and in addition assume that
Mg < 0. Then given any u0(·) ∈ X there exist positive constants C1, C2, M̃1 and

M̃2 such that for all t > t0 and µ < 6λ
M̃1

, the solution (ũ(y, t), R(t)) of problem

(47) satisfies

R0e
− 1

3 M̃1(t−t0) 6 R(t) 6 R0e
− 1

3 M̃2(t−t0), (54)

‖ũ(t)− α(t)‖2 6‖ũ0 − α(t0)‖2e−
β0
µ (t−t0)

+
6C1R

2
0

3β0 − 2µM̃2

(
e−

2
3 M̃2(t−t0) − e−

β0
µ (t−t0)

)
, (55)

where β0 = λ− µM̃1

6
> 0.220

Proof. Since Mg < 0, it holds that mg < Mg < 0. Writing M̃1 := −mg > 0 and

M̃2 := −Mg > 0, then clearly M̃1 > M̃2, and (54) follows directly from (11).
Now let v(y, t) = ũ(y, t) − α(t). It is straightforward to see that v(y, t)

satisfies 

µ
∂v

∂t
=

R2
0

R2(t)
∆v + µ

Ṙ(t)

R(t)
(y · ∇v)− f(v + α(t)) + µα̇(t)

for 0 < |y| < R0, t > t0,

v(R0, t) = 0 for t > t0,

v(r, t0) = v0(r) for 0 6 r 6 R0,

(56)

where v0(r) = ũ0(r) − α(t0) ∈ X. Multiplying (56) by v(y, t), integrating the
resultant equality over Ω0 and using assumptions (A1), (A3), (10) and (49),
we obtain

µ

2

d

dt
‖v(t)‖2 = − R2

0

R2(t)
‖∇v‖2 − µ

2

Ṙ(t)

R(t)
‖v(t)‖2 −

∫
Ω0

(f(v + α(t))− µα̇(t))vdy

6− λR2
0

R2(t)
‖v‖2 +

µM̃1

6
‖v‖2 +

β(t)

2
‖v‖2 + C1R

2(t)

6− β(t)

2
‖v‖2 + C1R

2(t),
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where C1 is a positive constant and β(t) :=
λR2

0

R2(t)
− µM̃1

6
> 0, which together

with (54) gives

d

dt
‖v(t)‖2 +

β0

µ
‖v(t)‖2 6

2C1R
2
0

µ
e−

2
3 M̃2(t−t0), (57)

where β0 :=
2λ

3
− µM̃1

3
> 0. The inequality (55) then follows directly from the

above inequality. The proof is complete.

Remark 5.1. The assumption µ < 6λ
M̃1

was imposed to ensure that β(t) =225

λ
R2

0

R(t) − µ
M̃1

6 is positive. This assumption can be largely weakened or even re-

moved as R(t) → 0 as t → ∞. Moreover, µ is naturally small from modeling
perspective.

6. Closing remarks

The system (1)-(2) proposed by Byrne and Chaplain [2] for tumor growth230

has drawn extensive attention from both researchers and practitioners in can-
cer research. However to the best of our knowledge most of the existing works
assumed that the nutrient supply rate at the tumor surface was constant or pe-
riodic. One natural question would then arise, what if the nutrient is supplied
at a non-constant rate, and how would that affect the effectiveness of cancer235

treatment. This motivates our work of studying system (1)-(2) with time de-
pendent nutritional supply α(t) on the tumor surface and general functions f
and g.

Not surprisingly, through this work fundamental differences are discovered
to exist between the model (1)-(2) with time dependent nutrient supply α(t)240

and with constant nutrient supply α. In particular, as presented in Subsection
4.2 and Section 5, the long time behavior of the solutions of problem (NTS) is
highly dependent on α(t). In addition to the consideration of time-dependent
nutrient supply, another novelty of our work lies in that the functions f and
g are not required to be linear or almost linear, which largely extends existing245

results on linear cases.
The highlights of this work are summarized as follows. The global existence

and uniqueness of a transient solution for the problem (NTS) is established
first by using fixed point theorem. Then, under additional regularity conditions
on f and g (i.e., assumptions (A5) and (A6)), we verify that with a certain250

fixed nutrition supply αs(> α∗) on the tumor surface, the problem (NTS) has
a unique steady-state solution. Moreover, the nutrient concentration and the
tumor size will evolve toward a dormant state eventually if the time dependent
nutritional supply α(t) becomes stable as time goes on. To be exact, if α(t)
converges exponentially to αs, then the transient solution will approach the255

steady-state solution exponentially fast. In the last section we present more
comprehensive analysis for evolution of the nutrient concentration and tumor
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size under different conditions. More precisely under some general conditions
about the nutritional supply α(t) rate and functions f and g, we mainly verify
that260

(i) provided µ suitable small, the nutrient concentration will exponentially
converge together over time. Moreover, the changes of radius of the tumor
cell over time is given under different situations between α∗ and αs.

(ii) if max
06s6α

g(s) < 0, then the tumor size tends to 0 and the nutrient concen-

tration within the tumor tends to the nutrient supply α(t) on the tumor265

surface, i.e., the tumor will disappear as t→∞.
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