103 research outputs found

    Semilinear mixed problems on Hilbert complexes and their numerical approximation

    Full text link
    Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010), 281-354] that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article [arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing variational crimes (a la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk [Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J. Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold-Falk-Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error estimates in Section

    Numerical preservation of velocity induced invariant regions for reaction-diffusion systems on evolving surfaces

    Get PDF
    We propose and analyse a finite element method with mass lumping (LESFEM) for the numerical approximation of reaction-diffusion systems (RDSs) on surfaces in R3 that evolve under a given velocity field. A fully-discrete method based on the implicit-explicit (IMEX) Euler time-discretisation is formulated and dilation rates which act as indicators of the surface evolution are introduced. Under the assumption that the mesh preserves the Delaunay regularity under evolution, we prove a sufficient condition, that depends on the dilation rates, for the existence of invariant regions (i) at the spatially discrete level with no restriction on the mesh size and (ii) at the fully-discrete level under a timestep restriction that depends on the kinetics, only. In the specific case of the linear heat equation, we prove a semi- and a fully-discrete maximum principle. For the well-known activator-depleted and Thomas reaction-diffusion models we prove the existence of a family of rectangles in the phase space that are invariant only under specific growth laws. Two numerical examples are provided to computationally demonstrate (i) the discrete maximum principle and optimal convergence for the heat equation on a linearly growing sphere and (ii) the existence of an invariant region for the LESFEM-IMEX Euler discretisation of a RDS on a logistically growing surface

    The prevalence of obesity in children with autism: a secondary data analysis using nationally representative data from the National Survey of Children's Health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of childhood obesity has increased dramatically in the last two decades and numerous efforts to understand, intervene on, and prevent this significant threat to children's health are underway for many segments of the pediatric population. Understanding the prevalence of obesity in populations of children with developmental disorders is an important undertaking, as the factors that give rise to obesity may not be the same as for typically developing children, and because prevention and treatment efforts may need to be tailored to meet their needs and the needs of their families. The goal of the current study was to estimate the prevalence of obesity in children and adolescents with autism.</p> <p>Methods</p> <p>This study was a secondary data analysis of cross-sectional nationally representative data collected by telephone interview of parents/guardians on 85,272 children ages 3-17 from the 2003-2004 National Survey of Children's Health (NSCH). Autism was determined by response to the question, "Has a doctor or health professional ever told you that your child has autism?" Children and adolescents were classified as obese accordingto CDC guidelines for body mass index (BMI) for age and sex.</p> <p>Results</p> <p>The prevalence of obesity in children with autism was 30.4% compared to 23.6% of children without autism (p = .075). The unadjusted odds of obesity in children with autism was 1.42 (95% confidence interval (CI): 1.00, 2.02, p = .052) compared to children without autism.</p> <p>Conclusions</p> <p>Based on US nationally representative data, children with autism have a prevalence of obesity at least as high as children overall. These findings suggest that additional research is warranted to understand better the factors that influence the development of obesity in this population of children.</p

    Poster display II clinical general

    Get PDF

    Poster display IV experimental and instrumentation

    Get PDF

    Disentangling the heterogeneity of autism spectrum disorder through genetic findings

    Full text link
    Autism spectrum disorder (ASD) represents a heterogeneous group of disorders, which presents a substantial challenge to diagnosis and treatment. Over the past decade, considerable progress has been made in the identification of genetic risk factors for ASD that define specific mechanisms and pathways underlying the associated behavioural deficits. In this Review, we discuss how some of the latest advances in the genetics of ASD have facilitated parsing of the phenotypic heterogeneity of this disorder. We argue that only through such advances will we begin to define endophenotypes that can benefit from targeted, hypothesis-driven treatments. We review the latest technologies used to identify and characterize the genetics underlying ASD and then consider three themes—single-gene disorders, the gender bias in ASD, and the genetics of neurological comorbidities—that highlight ways in which we can use genetics to define the many phenotypes within the autism spectrum. We also present current clinical guidelines for genetic testing in ASD and their implications for prognosis and treatment

    Water ingestion and excretion in turkeys with a rectal fistula

    No full text
    corecore