Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010),
281-354] that linear, mixed variational problems, and their numerical
approximation by mixed finite element methods, can be studied using the
powerful, abstract language of Hilbert complexes. In another recent article
[arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing
variational crimes (a la Strang) on Hilbert complexes. In particular, this gave
a treatment of finite element exterior calculus on manifolds, generalizing
techniques from surface finite element methods and recovering earlier a priori
estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk
[Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J.
Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we
extend the Hilbert complex framework in a second distinct direction: to the
study of semilinear mixed problems. We do this, first, by introducing an
operator-theoretic reformulation of the linear mixed problem, so that the
semilinear problem can be expressed as an abstract Hammerstein equation. This
allows us to obtain, for semilinear problems, a priori solution estimates and
error estimates that reduce to the Arnold-Falk-Winther results in the linear
case. We also consider the impact of variational crimes, extending the results
of our previous article to these semilinear problems. As an immediate
application, this new framework allows for mixed finite element methods to be
applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error
estimates in Section