3 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers: identification of diagnostic marker products and biological implications

    No full text
    Aromatic boronic acids react rapidly with peroxynitrite (ONOO–) to yield phenols as major products. This reaction was used to monitor ONOO– formation in cellular systems. Previously, we proposed that the reaction between ONOO– and arylboronates (PhB(OH)2) yields a phenolic product (major pathway) and a radical pair PhB(OH)2O•–···•NO2 (minor pathway). [Sikora, A. et al. (2011) Chem. Res. Toxicol.24, 687−697]. In this study, we investigated the influence of a bulky triphenylphosphonium (TPP) group on the reaction between ONOO– and mitochondria-targeted arylboronate isomers (o-, m-, and p-MitoPhB(OH)2). Results from the electron paramagnetic resonance (EPR) spin-trapping experiments unequivocally showed the presence of a phenyl radical intermediate from meta and para isomers, and not from the ortho isomer. The yield of o-MitoPhNO2 formed from the reaction between o-MitoPhB(OH)2 and ONOO– was not diminished by phenyl radical scavengers, suggesting a rapid fragmentation of the o-MitoPhB(OH)2O•– radical anion with subsequent reaction of the resulting phenyl radical with •NO2 in the solvent cage. The DFT quantum mechanical calculations showed that the energy barrier for the dissociation of the o-MitoPhB(OH)2O•– radical anion is significantly lower than that of m-MitoPhB(OH)2O•– and p-MitoPhB(OH)2O•– radical anions. The nitrated product, o-MitoPhNO2, is not formed by the nitrogen dioxide radical generated by myeloperoxidase in the presence of the nitrite anion and hydrogen peroxide, indicating that this specific nitrated product may be used as a diagnostic marker product for ONOO–. Incubation of o-MitoPhB(OH)2 with RAW 264.7 macrophages activated to produce ONOO– yielded the corresponding phenol o-MitoPhOH as well as the diagnostic nitrated product, o-MitoPhNO2. We conclude that the ortho isomer probe reported here is most suitable for specific detection of ONOO– in biological systems

    Chronic Stress and Diabetes Mellitus: Interwoven Pathologies

    No full text
    corecore