8 research outputs found
Perkembangan Penyebab Penyakit Busuk Lunak Pada Tanaman Buah Naga Merah (Hylocereus Polyrhizus) di Kabupaten Banyuwangi
Red dragon fruit (Hylocereus polyrhizus) is one of the most important commodities in Indonesia. The dragon fruit production center in Indonesia is located in Banyuwangi Regency with a production of 82,544 per year. Areas in Banyuwangi that produce large quantities of dragon fruit are Bangorejo, Pesanggaran, Silirangung, Purwoharjo, and Tegaldlimo. Dragon fruit is a type of plant that has a strong resistance, but there are many factors that can cause a decrease in production, one of which is OPT. Soft rot disease in dragon fruit is an example of a pest that attacks dragon fruit plants. This disease can cause physical, physiological, and chemical changes in dragon fruit plants that affect production yields. According to several sources of bacteria that cause soft rot disease is Pectobacterium. Pectobacterium will spread quickly if the surrounding conditions are supportive, such as environmental conditions, weather, temperature, and care carried out by farmers. 
Utilization of Modified Zeolite as Catalyst for Steam Gasification of Palm Kernel Shell
Syngas from biomass gasification is being developed for alternative feedstock in the chemical industry. Palm kernel shell which is generated from palm oil industry can be potentially used as raw material for gasification process. The purpose of this study was to investigate the use of modified natural zeolite catalysts in steam gasification of palm kernel shells. Mordenite type zeolite was modified by acid leaching to be used as a tar cracking catalyst. Steam gasification was conducted at the temperature range of 750–850 °C and the steam to biomass ratio was in the range of 0–2.25. The result showed that steam gasification of palm kernel shell with the addition of zeolite catalyst at 750 °C and steam to biomass ratio 2.25 could reduce tar content up to 98% or became 0.7 g/Nm3. In this study, gasification of palm kernel shells produced syngas with the hydrogen concentration in the range of 52–64% and H2/CO ratio of 2.7–5.7. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
PRARANCANGAN PABRIK BIOAVTUR DARI CRUDE PALM OIL DENGAN PROSES UNIVERSAL OIL PRODUCT (UOP) KAPASITAS 87.000 TON/TAHUN
Dwi Hantoko, Muflih Arisa Adnan, 2013, Prarancangan Pabrik Bioavtur
dari Crude Palm Oil dengan Proses Universal Oil Product (UOP) Kapasitas
87.000 ton/tahun. Program Studi S1 Reguler, Jurusan Teknik Kimia,
Fakultas Teknik, Universitas Sebelas Maret, Surakarta.
Luas perkebunan kelapa sawit di Indonesia adalah 7,8 juta ha dan 28%
perkebunan berada di Provinsi Riau. Hal ini membuat Indonesia menjadi
produsen crude palm oil (CPO) utama di dunia dengan total produksi rata-rata
sebesar 22,5 juta ton/tahun pada tahun 2010. Pemerintah Indonesia mendukung
nilai tambah bahan baku terutama CPO berdasarkan PP No. 33 tahun 2011 terkait
dengan implementasi teknologi pengolahan CPO. Crude palm oil dapat diolah
menjadi komoditas yang mempunyai nilai tinggi seperti produk makanan, fine
chemicals, maupun biofuel seperti bioavtur sebagai bahan bakar pesawat terbang.
Secara tipikal CPO terdiri dari trigliserida dan FFA. Dengan menggunakan
proses UOP, CPO direaksikan dengan H2 membentuk alkana rantai panjang
melalui reaksi hydrotreating dan akan dilanjutkan reaksi hydrocracking yang akan
menghasilkan produk sesuai jumlah rantai karbon masing-masing. Umpan sebesar
2,76 ton CPO dapat menghasilkan 1 ton bioavtur. Selain itu membutuhkan 0,31
ton hidrogen/ton produk (kemurnian 97%), asam fosfat 85% (H3PO4) 0,002
ton/ton produk, bleaching earth 0,033 ton/ton produk. Reaksi berlangsung dengan
bantuan katalis UOP pada suhu 332 – 398 oC dan tekanan 5.171 kPa di dalam
reaktor single bed multitube. Kebutuhan utilitas meliputi steam sebanyak 1,53
ton/ton produk, air pendingin 109,6 m3/ton produk, listrik 45,47 kWh/ton produk,
udara tekan 4,62 Nm3/ton produk, dan bahan bakar tail gas 0,12 ton/ton produk.
Lokasi pabrik direncanakan di Dumai Riau dan dibangun di atas tanah seluas
39.400 m2, pabrik beroperasi selama 24 jam per hari dan 330 hari per tahun
dengan kebutuhan tenaga kerja 6,03 manhour/ton produk. Selain menghasilkan
bioavtur, proses ini juga menghasilkan nafta 47.700 ton/tahun, atmospheric gas
oil (AGO) 2.900 ton/tahun, biodiesel 31.700 ton/tahun, dan listrik 62.000
MWh/tahun.
Bentuk perusahaan adalah Perseroan Terbatas (PT) dengan struktur
organisasi line and staff. Sistem kerja karyawan berdasarkan pembagian jam kerja
yang terdiri dari karyawan shift dan non shift. Pabrik direncanakan mulai
konstruksi di awal 2014 dan bisa beroperasi pada awal tahun 2016 dengan umur
pabrik 10 tahun. Dengan harga jual produk Rp29.200,-/liter, harga beli CPO
Rp7.857.000,-/ton, biaya produksi Rp138.000,-/galon, dan modal tetap pabrik
sebesar Rp. 442.490.000.000,- maka analisa kelayakan menunjukkan bahwa ROI
sebelum pajak 40,18% dan setelah pajak 30,13%. POT sebelum pajak tahun
sebesar 1,99 tahun dan setelah pajak 2,49 tahun, BEP 59,99%, SDP 46,05% dan
DCF sebesar 15,84%. Berdasarkan nilai parameter-parameter tersebut maka
pabrik ini layak dipertimbangkan untuk realisasi pembangunannya
Experimental study on the energy conversion of food waste via supercritical water gasification: Improvement of hydrogen production
In this study, the model food waste was gasified to hydrogen-rich syngas in a batch reactor under supercritical water condition. The model food consisted of rice, chicken, cabbage, and cooking oil. The effects of the main operating parameters including temperature (420–500 °C), residence time (20–60 min) and feedstock concentration (2–10 wt%) were investigated. Under the optimal condition at 500 °C, 2 wt% feedstock and 60 min residence time, the highest H 2 yield of 13.34 mol/kg and total gas yield of 28.27 mol/kg were obtained from non-catalytic experiments. In addition, four commercial catalysts namely FeCl 3 , K 2 CO 3 , activated carbon, and KOH were employed to investigate the catalytic effect of additives at the optimal condition. The results showed that the highest hydrogen yield of 20.37 mol/kg with H 2 selectivity of 113.19%, and the total gas yield of 38.36 mol/kg were achieved with 5 wt% KOH addition Moreover, the low heating value of gas products from catalytic experiments with KOH increased by 32.21% compared to the non-catalytic experiment. The catalytic performance of the catalysts can be ranked in descending order as KOH > activated carbon > FeCl 3 > K 2 CO 3 . The supercritical water gasification (SCWG) with KOH addition can be a potential applied technology for food waste treatment with production of hydrogen-rich gases. © 2019 Hydrogen Energy Publications LL
Carbon–neutral hydrogen production by catalytic methane decomposition: a review
The global hydrogen demand is projected to increase from 70 million tons in 2019 to more than 200 million tons in 2030. Methane decomposition is a promising reaction for H2 production, coupled with the synthesis of valuable carbon nanomaterials applicable in fuel cell technology, transportation fuels, and chemical synthesis. Here, we review catalytic methane decomposition, with focus on catalyst development, deactivation, reactivation, regeneration, and on economics. Catalysts include mono-, bi-, and trimetallic compounds and carbon-based compounds. Catalyst deactivation is induced by coke deposition. Despite remarkable strides in research, industrialization remains at an early stage