3 research outputs found

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    Get PDF
    Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    No full text
    • Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. • Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. • Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost threequarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. • Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades.Fil: Ollerton, Jeff. University of Northampton; Reino UnidoFil: Liede Schumann, Sigrid. University of Bayreuth; AlemaniaFil: Endress, Mary E.. Universitat Zurich; SuizaFil: Meve, Ulrich. University of Bayreuth; AlemaniaFil: Rech, André Rodrigo. Universidade Federal dos Vales do Jequitinhonha e Mucuri; BrasilFil: Shuttleworth, Adam. University of KwaZulu-Natal; SudáfricaFil: Keller, Hector Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Fishbein, Mark. Oklahoma State University; Estados UnidosFil: Alvarado Cárdenas, Leonardo O.. Universidad Nacional Autónoma de México; MéxicoFil: Amorim, Felipe W.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bernhardt, Peter. Saint Louis University; Estados UnidosFil: Celep, Ferhat. No especifíca;Fil: Chirango, Yolanda. University of Cape Town; SudáfricaFil: Chiriboga Arroyo, Fidel. Eidgenössische Technische Hochschule Zürich; SuizaFil: Civeyrel, Laure. Université de Toulouse; FranciaFil: Cocucci, Andrea Aristides. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Cranmer, Louise. University of Northampton; Reino UnidoFil: Da Silva Batista, Inara Carolina. Universidade Federal do Rio de Janeiro; BrasilFil: De Jager, Linde. University of the Free State; SudáfricaFil: Deprá, Mariana Scaramussa. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Domingos Melo, Arthur. Universidade Federal de Pernambuco; BrasilFil: Dvorsky, Courtney. Saint Louis University; Reino UnidoFil: Gorostiague, Pablo. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Escuela de Agronomía. Laboratorio de Investigaciones Botánicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Galetto, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Torres, Carolina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Wiemer, Ana Pia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Yamashiro,Tadashi. Tokushima University; JapónFil: Nadia,Tarcila. Universidade Federal de Pernambuco; BrasilFil: Queiroz, Joel. Universidade Federal da Paraiba; BrasilFil: Quirino, Zelma. Universidade Federal da Paraiba; Brasi
    corecore