254 research outputs found
Safe Maneuvering Near Offshore Installations: A New Algorithmic Tool
Maneuvers of human-operated and autonomous marine vessels in the safety zone of drilling rigs, wind farms and other installations present a risk of collision. This article proposes an algorithmic toolkit that ensures maneuver safety, taking into account the restrictions imposed by ship dynamics. The algorithms can be used for anomaly detection, decision making by a human operator or an unmanned vehicle guidance system. We also consider a response to failures in the vessel's control systems and emergency escape maneuvers. Data used by the algorithms come from the vessel's dynamic positioning control system and positional survey charts of the marine installations
Secular sea level change in the Russian sector of the Arctic Ocean
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03042, doi:10.1029/2003JC002007.Sea level is a natural integral indicator of climate variability. It reflects changes in practically all dynamic and thermodynamic processes of terrestrial, oceanic, atmospheric, and cryospheric origin. The use of estimates of sea level rise as an indicator of climate change therefore incurs the difficulty that the inferred sea level change is the net result of many individual effects of environmental forcing. Since some of these effects may offset others, the cause of the sea level response to climate change remains somewhat uncertain. This paper is focused on an attempt to provide first-order answers to two questions, namely, what is the rate of sea level change in the Arctic Ocean, and furthermore, what is the role of each of the individual contributing factors to observed Arctic Ocean sea level change? In seeking answers to these questions we have discovered that during the period 1954–1989 the observed sea level over the Russian sector of the Arctic Ocean is rising at a rate of approximately 0.123 cm yr−1 and that after correction for the process of glacial isostatic adjustment this rate is approximately 0.185 cm yr−1. There are two major causes of this rise. The first is associated with the steric effect of ocean expansion. This effect is responsible for a contribution of approximately 0.064 cm yr−1 to the total rate of rise (35%). The second most important factor is related to the ongoing decrease of sea level atmospheric pressure over the Arctic Ocean, which contributes 0.056 cm yr−1, or approximately 30% of the net positive sea level trend. A third contribution to the sea level increase involves wind action and the increase of cyclonic winds over the Arctic Ocean, which leads to sea level rise at a rate of 0.018 cm yr−1 or approximately 10% of the total. The combined effect of the sea level rise due to an increase of river runoff and the sea level fall due to a negative trend in precipitation minus evaporation over the ocean is close to 0. For the Russian sector of the Arctic Ocean it therefore appears that approximately 25% of the trend of 0.185 cm yr−1, a contribution of 0.048 cm yr−1, may be due to the effect of increasing Arctic Ocean mass.This material is based upon
work supported by the National Science Foundation under grant 0136432
Constraints on the Neutrino Mass from SZ Surveys
Statistical measures of galaxy clusters are sensitive to neutrino masses in
the sub-eV range. We explore the possibility of using cluster number counts
from the ongoing PLANCK/SZ and future cosmic-variance-limited surveys to
constrain neutrino masses from CMB data alone. The precision with which the
total neutrino mass can be determined from SZ number counts is limited mostly
by uncertainties in the cluster mass function and intracluster gas evolution;
these are explicitly accounted for in our analysis. We find that projected
results from the PLANCK/SZ survey can be used to determine the total neutrino
mass with a (1\sigma) uncertainty of 0.06 eV, assuming it is in the range
0.1-0.3 eV, and the survey detection limit is set at the 5\sigma significance
level. Our results constitute a significant improvement on the limits expected
from PLANCK/CMB lensing measurements, 0.15 eV. Based on expected results from
future cosmic-variance-limited (CVL) SZ survey we predict a 1\sigma uncertainty
of 0.04 eV, a level comparable to that expected when CMB lensing extraction is
carried out with the same experiment. A few percent uncertainty in the mass
function parameters could result in up to a factor \sim 2-3 degradation of our
PLANCK and CVL forecasts. Our analysis shows that cluster number counts provide
a viable complementary cosmological probe to CMB lensing constraints on the
total neutrino mass.Comment: Replaced with a revised version to match the MNRAS accepted version.
arXiv admin note: text overlap with arXiv:1009.411
Knots: Attractive Places with High Path Tortuosity in Mouse Open Field Exploration
When introduced into a novel environment, mammals establish in it a preferred place marked by the highest number of visits and highest cumulative time spent in it. Examination of exploratory behavior in reference to this “home base” highlights important features of its organization. It might therefore be fruitful to search for other types of marked places in mouse exploratory behavior and examine their influence on overall behavior
Sea level variability in the Arctic Ocean from AOMIP models
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S08, doi:10.1029/2006JC003916.Monthly sea levels from five Arctic Ocean Model Intercomparison Project (AOMIP) models are analyzed and validated against observations in the Arctic Ocean. The AOMIP models are able to simulate variability of sea level reasonably well, but several improvements are needed to reduce model errors. It is suggested that the models will improve if their domains have a minimum depth less than 10 m. It is also recommended to take into account forcing associated with atmospheric loading, fast ice, and volume water fluxes representing Bering Strait inflow and river runoff. Several aspects of sea level variability in the Arctic Ocean are investigated based on updated observed sea level time series. The observed rate of sea level rise corrected for the glacial isostatic adjustment at 9 stations in the Kara, Laptev, and East Siberian seas for 1954–2006 is estimated as 0.250 cm/yr. There is a well pronounced decadal variability in the observed sea level time series. The 5-year running mean sea level signal correlates well with the annual Arctic Oscillation (AO) index and the sea level atmospheric pressure (SLP) at coastal stations and the North Pole. For 1954–2000 all model results reflect this correlation very well, indicating that the long-term model forcing and model reaction to the forcing are correct. Consistent with the influences of AO-driven processes, the sea level in the Arctic Ocean dropped significantly after 1990 and increased after the circulation regime changed from cyclonic to anticyclonic in 1997. In contrast, from 2000 to 2006 the sea level rose despite the stabilization of the AO index at its lowest values after 2000.This research is supported by the National Science Foundation Office
of Polar Programs (under cooperative agreements OPP- 0002239 and OPP-
0327664) with the International Arctic Research Center, University of
Alaska Fairbanks, and by the Climate Change Prediction Program of the
Department of Energy’s Office of Biological and Environmental Research.
The development of the UW model is also supported by NASA grants
NNG04GB03G and NNG04GH52G and NSF grants OPP-0240916 and
OPP-0229429
BICEP2 / Keck Array V: Measurements of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array
The Keck Array is a system of cosmic microwave background (CMB) polarimeters,
each similar to the BICEP2 experiment. In this paper we report results from the
2012 and 2013 observing seasons, during which the Keck Array consisted of five
receivers all operating in the same (150 GHz) frequency band and observing
field as BICEP2. We again find an excess of B-mode power over the
lensed-CDM expectation of in the range
and confirm that this is not due to systematics using jackknife tests and
simulations based on detailed calibration measurements. In map difference and
spectral difference tests these new data are shown to be consistent with
BICEP2. Finally, we combine the maps from the two experiments to produce final
Q and U maps which have a depth of 57 nK deg (3.4 K arcmin) over an
effective area of 400 deg for an equivalent survey weight of 250,000
K. The final BB band powers have noise uncertainty a factor of 2.3
times better than the previous results, and a significance of detection of
excess power of .Comment: 13 pages, 9 figure
BICEP2 / Keck Array VIII: Measurement of gravitational lensing from large-scale B-mode polarization
We present measurements of polarization lensing using the 150 GHz maps which
include all data taken by the BICEP2 & Keck Array CMB polarization experiments
up to and including the 2014 observing season (BK14). Despite their modest
angular resolution (), the excellent sensitivity (K-arcmin) of these maps makes it possible to directly reconstruct the
lensing potential using only information at larger angular scales (). From the auto-spectrum of the reconstructed potential we measure an
amplitude of the spectrum to be (Planck
CDM prediction corresponds to ), and reject
the no-lensing hypothesis at 5.8, which is the highest significance
achieved to date using an EB lensing estimator. Taking the cross-spectrum of
the reconstructed potential with the Planck 2015 lensing map yields
. These direct measurements of
are consistent with the CDM cosmology, and with
that derived from the previously reported BK14 B-mode auto-spectrum (). We perform a series of null tests and consistency
checks to show that these results are robust against systematics and are
insensitive to analysis choices. These results unambiguously demonstrate that
the B-modes previously reported by BICEP / Keck at intermediate angular scales
() are dominated by gravitational lensing. The
good agreement between the lensing amplitudes obtained from the lensing
reconstruction and B-mode spectrum starts to place constraints on any
alternative cosmological sources of B-modes at these angular scales.Comment: 12 pages, 8 figure
- …