12 research outputs found

    BIOPHYSICAL CHARACTERIZATION OF CHEMICALLY UNFOLDED STATES OF THE MEMBRANE PROTEIN RHODOPSIN

    Get PDF
    Membrane proteins function as important communication channels of the cell and its environment that aid in regulating the overall homeostasis of organisms. Understanding the pathways by which these proteins adopt their three-dimensional structures can provide us with key insights into their functions. Failure of a membrane protein to fold into its native structure can lead to disruption of their functions and cause diseases. Through an understanding of the folding mechanisms of membrane proteins it may be possible to identify avenues for the treatment of such diseases. Towards these goals, this thesis describes the biophysical characterization of denatured states of rhodopsin, a model system selected to study helical membrane protein folding. The first contribution of this thesis was to establish approaches that can be used to identify suitable conditions for studying membrane protein folding in vitro. This required screening different denaturing conditions to obtain maximum unfolding without causing aggregation of rhodopsin. 30% SDS and 3% SDS + 8 M urea were found to be the most suitable denaturing conditions. Next, structural features of largely unfolded states of rhodopsin under optimized denaturing conditions were systematically characterized focussing on three levels of structural resolution: global, local and site-specific. Global tertiary structure changes upon SDS denaturation were observed to correlate with SDS micellar structure changes and also hinted at formation of compact intermediate states. Local structural dynamics, probed by NMR spectroscopy, showed that the cytoplasmic domain is more flexible than extracellular and transmembrane domains taken together in spite of an overall increase in flexibility with denaturation. Mobility studies probing site-specific changes by EPR spectroscopy, showed that specific extracellular residues retain more rigidity than cytoplasmic residues in denatured states. These results indicate that the former domain is involved in more stable interactions forming a possible folding core like structure, the location of which correlates with that described by the long-range interaction model of folding. Finally, the importance of dynamics in understanding folding mechanisms of rhodopsin led us to contribute to the development of two novel methodologies: terahertz spectroscopy to detect global motions and 19F NMR using new monofluoro labels to quantify residue specific motions

    Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    Get PDF
    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals

    Differential dynamics of extracellular and cytoplasmic domains in denatured states of rhodopsin

    Get PDF
    Rhodopsin is a model system for understanding membrane protein folding. Recently, conditions that allow maximally denaturing rhodopsin without causing aggregation have been determined, opening the door to the first structural characterization of denatured states of rhodopsin by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy. One-dimensional 1H NMR spectra confirm a progressive increase in flexibility of resonances in rhodopsin with increasing denaturant concentrations. Two-dimensional 1H–15N HSQC spectra of [15N]-α-lysine-labeled rhodopsin in which signals arise primarily from residues in the cytoplasmic (CP) domain and of [15N]-α,ε-tryptophan-labeled rhodopsin in which signals arise only from transmembrane (TM) and extracellular (EC) residues indicate qualitatively that EC and CP domains may be differentially affected by denaturation. To obtain residue-specific information, particular residues in EC and CP domains were investigated by site-directed spin labeling. EPR spectra of the spin-labeled samples indicate that the EC residues retain more rigidity in the denatured states than the CP residues. These results support the notion of residual structure in denatured states of rhodopsin

    NMR-based screening of membrane protein ligands

    No full text
    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with ligands non-specifically, overlap with protein signals, modulate protein dynamics and conformational exchange and compromise sensitivity by adding highly intense background signals. In this article, we discuss the special considerations arising from these problems when conducting NMR-based ligand-binding studies with membrane proteins. While the use of13C and15N isotopes is becoming increasingly feasible,19F and1H NMR-based approaches are currently the most widely explored. By using suitable NMR parameter selection schemes independent of or exploiting the presence of detergent,1H-based approaches require least effort in sample preparation because of the high sensitivity and natural abundance of1H in both, ligand and protein. On the other hand, the19F nucleus provides an ideal NMR probe because of its similarly high sensitivity to that of1H and the lack of natural19F background in biologic systems. Despite its potential, the use of NMR spectroscopy is highly underdeveloped in the area of drug discovery for membrane proteins. © 2010 John Wiley & Sons A/S

    Characterization of the simultaneous decay kinetics of metarhodopsin states II and III in rhodopsin by solution-state NMR spectroscopy

    No full text
    The mammalian visual dim-light photoreceptor rhodopsin is considered a prototype G protein-coupled receptor. Here, we characterize the kinetics of its light-activation process. Milligram quantities of α,ε-15N-labeled tryptophan rhodopsin were produced in stably transfected HEK293 cells. Assignment of the chemical shifts of the indole signals was achieved by generating the single-point-tryptophan to phenylalanine mutants, and the kinetics of each of the five tryptophan residues were recorded. We find kinetic partitioning in rhodopsin decay, including three half-lives, that reveal two parallel processes subsequent to rhodopsin activation that are related to the photocycle. The meta II and meta III states emerge in parallel with a relative ratio of about 3:1. Transient formation of the meta III state was confirmed by flash photolysis experiments. From analysis of the site-resolved kinetic data we propose the involvement of the E2-loop in the formation of the meta III state

    Retinal proteins as model systems for membrane protein folding

    Get PDF
    Experimental folding studies of membrane proteins are more challenging than water-soluble proteins because of the higher hydrophobicity content of membrane embedded sequences and the need to provide a hydrophobic milieu for the transmembrane regions. The first challenge is their denaturation: due to the thermodynamic instability of polar groups in the membrane, secondary structures in membrane proteins are more difficult to disrupt than in soluble proteins. The second challenge is to refold from the denatured states. Successful refolding of membrane proteins has almost always been from very subtly denatured states. Therefore, it can be useful to analyze membrane protein folding using computational methods, and we will provide results obtained with simulated unfolding of membrane protein structures using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method. Computational methods have the advantage that they allow a direct comparison between diverse membrane proteins. We will review here both, experimental and FIRST studies of the retinal binding proteins bacteriorhodopsin and mammalian rhodopsin, and discuss the extension of the findings to deriving hypotheses on the mechanisms of folding of membrane proteins in general. This article is part of a Special Issue entitled: Retinal Proteins—You can teach an old dog new tricks
    corecore