128 research outputs found

    Magnitude-sensitive reaction times reveal non-linear time costs in multi-alternative decision-making

    Get PDF
    Optimality analysis of value-based decisions in binary and multi-alternative choice settings predicts that reaction times should be sensitive only to differences in stimulus magnitudes, but not to overall absolute stimulus magnitude. Yet experimental work in the binary case has shown magnitude sensitive reaction times, and theory shows that this can be explained by switching from linear to multiplicative time costs, but also by nonlinear subjective utility. Thus disentangling explanations for observed magnitude sensitive reaction times is difficult. Here for the first time we extend the theoretical analysis of geometric time-discounting to ternary choices, and present novel experimental evidence for magnitude-sensitivity in such decisions, in both humans and slime moulds. We consider the optimal policies for all possible combinations of linear and geometric time costs, and linear and nonlinear utility; interestingly, geometric discounting emerges as the predominant explanation for magnitude sensitivity

    Symmetry restoring bifurcation in collective decision-making.

    Get PDF
    How social groups and organisms decide between alternative feeding sites or shelters has been extensively studied both experimentally and theoretically. One key result is the existence of a symmetry-breaking bifurcation at a critical system size, where there is a switch from evenly distributed exploitation of all options to a focussed exploitation of just one. Here we present a decision-making model in which symmetry-breaking is followed by a symmetry restoring bifurcation, whereby very large systems return to an even distribution of exploitation amongst options. The model assumes local positive feedback, coupled with a negative feedback regulating the flow toward the feeding sites. We show that the model is consistent with three different strains of the slime mold Physarum polycephalum, choosing between two feeding sites. We argue that this combination of feedbacks could allow collective foraging organisms to react flexibly in a dynamic environment

    A new experimental setup for studying ants and similar-sized insects

    Get PDF
    Laboratory studies on insects face the dual challenge of maintaining organisms under artificial conditions, and in reduced spaces while mimicking the species’ ecological requirements as much as possible. Over decades, myrmecologists have developed and continuously improved laboratory methods and artificial nests for rearing ants. However, the setups commonly used to house colony fragments of few individuals or even isolated individuals present disadvantages such as insufficient ventilation, difficult access to specific workers, and problems with water delivery. Here, we developed and tested a new setup for keeping ants or similar sized insects in small groups. The setup consisted of a Petri dish containing a piece of plaster connected underneath to a water tank by a sponge. The sponge is immersed in the water on one side and embedded in the plaster on the other side, maintaining the plaster permanently moist and thus offering a water source to the ants. We tested the setup with two ant species of different sizes, Platythyrea punctata and Cardiocondyla obscurior in feeding, starvation, and desiccation conditions. Our results showed that our new setup worked equally well for both species in all conditions in comparison to a more conventional setup with the advantage of reducing maintenance costs and ant manipulation, but also preventing death by drowning and offering water ad libitum. The setup was quick to build, with cheap and reusable materials for further experiments. Therefore, we are confident that it will facilitate future studies on isolated or small groups of individuals and that such a standardized setup will make future studies more comparable

    Individual rules for trail pattern formation in Argentine ants (Linepithema humile)

    Get PDF
    We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed.Comment: final version, 9 figures, submitted to Plos Computational Biology (accepted

    An Agent-Based Approach to Self-Organized Production

    Full text link
    The chapter describes the modeling of a material handling system with the production of individual units in a scheduled order. The units represent the agents in the model and are transported in the system which is abstracted as a directed graph. Since the hindrances of units on their path to the destination can lead to inefficiencies in the production, the blockages of units are to be reduced. Therefore, the units operate in the system by means of local interactions in the conveying elements and indirect interactions based on a measure of possible hindrances. If most of the units behave cooperatively ("socially"), the blockings in the system are reduced. A simulation based on the model shows the collective behavior of the units in the system. The transport processes in the simulation can be compared with the processes in a real plant, which gives conclusions about the consequencies for the production based on the superordinate planning.Comment: For related work see http://www.soms.ethz.c

    Symmetry breaking in mass-recruiting ants: extent of foraging biases depends on resource quality

    Get PDF
    The communication involved in the foraging behaviour of social insects is integral to their success. Many ant species use trail pheromones to make decisions about where to forage. The strong positive feedback caused by the trail pheromone is thought to create a decision between two or more options. When the two options are of identical quality, this is known as symmetry breaking, and is important because it helps colonies to monopolise food sources in a competitive environment. Symmetry breaking is thought to increase with the quantity of pheromone deposited by ants, but empirical studies exploring the factors affecting symmetry breaking are limited. Here, we tested if (i) greater disparity between two food sources increased the degree to which a higher quality food source is favoured and (ii) if the quality of identical food sources would affect the degree of symmetry breaking that occurs. Using the mass-recruiting Pharaoh ant, Monomorium pharaonis, we carried out binary choice tests to investigate how food quality affects the choice and distribution of colony foraging decisions. We found that colonies could coordinate foraging to exploit food sources of greater quality, and a greater contrast in quality between the food sources created a stronger collective decision. Contrary to prediction, we found that symmetry breaking decreased as the quality of two identical food sources increased. We discuss how stochastic effects might lead to relatively strong differences in the amount of pheromone on alternative routes when food source quality is low. Significance statement: Pheromones used by social insects should guide a colony via positive feedback to distribute colony members at resources in the most adaptive way given the current environment. This study shows that when food resources are of equal quality, Pharaoh ant foragers distribute themselves more evenly if the two food sources are both of high quality compared to if both are of low quality. The results highlight the way in which individual ants can modulate their response to pheromone trails which may lead colonies to exploiting resources more evenly when in a resource rich environment

    Quality-sensitive foraging by a robot swarm through virtual pheromone trails

    Get PDF
    Large swarms of simple autonomous robots can be employed to find objects clustered at random locations, and transport them to a central depot. This solution offers system parallelisation through concurrent environment exploration and object collection by several robots, but it also introduces the challenge of robot coordination. Inspired by ants’ foraging behaviour, we successfully tackle robot swarm coordination through indirect stigmergic communication in the form of virtual pheromone trails. We design and implement a robot swarm composed of up to 100 Kilobots using the recent technology Augmented Reality for Kilobots (ARK). Using pheromone trails, our memoryless robots rediscover object sources that have been located previously. The emerging collective dynamics show a throughput inversely proportional to the source distance. We assume environments with multiple sources, each providing objects of different qualities, and we investigate how the robot swarm balances the quality-distance trade-off by using quality-sensitive pheromone trails. To our knowledge this work represents the largest robotic experiment in stigmergic foraging, and is the first complete demonstration of ARK, showcasing the set of unique functionalities it provides

    Group Living Enhances Individual Resources Discrimination: The Use of Public Information by Cockroaches to Assess Shelter Quality

    Get PDF
    In group-living organisms, consensual decision of site selection results from the interplay between individual responses to site characteristics and to group-members. Individuals independently gather personal information by exploring their environment. Through social interaction, the presence of others provides public information that could be used by individuals and modulates the individual probability of joining/leaving a site. The way that individual's information processing and the network of interactions influence the dynamics of public information (depending on population size) that in turn affect discrimination in site quality is a central question. Using binary choice between sheltering sites of different quality, we demonstrate that cockroaches in group dramatically outperform the problem-solving ability of single individual. Such use of public information allows animals to discriminate between alternatives whereas isolated individuals are ineffective (i.e. the personal discrimination efficiency is weak). Our theoretical results, obtained from a mathematical model based on behavioral rules derived from experiments, highlight that the collective discrimination emerges from competing amplification processes relying on the modulation of the individual sheltering time without shelters comparison and communication modulation. Finally, we well demonstrated here the adaptive value of such decision algorithm. Without any behavioral change, the system is able to shift to a more effective strategy when alternatives are present: the modification of the spatio-temporal distributions of individuals leading to the collective selection of the best resource. This collective discrimination implying such parsimonious and widespread mechanism must be shared by many group living-species

    Steering self-organisation through confinement

    Get PDF
    Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units’ translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter
    corecore