93 research outputs found
A Systems Engineering Approach to Aircraft Kinetic Kill Countermeasures Technology: Development of an Active Aircraft Defense System for the C/KC-135 Aircraft
Modern Surface to Air Missiles (SAMs) present a significant threat to today\u27s military and civilian aircraft. Current countermeasure systems such as flares and chaff rely on decoying the missile threat and do not provide adequate protection against advanced computerized missiles (Schaffer, 1993:1). An aircraft defense system that actively seeks out and defeats an incoming missile by placing a physical barrier in the missile\u27s path offers a promising alternative to current countermeasures technology. This thesis reports the preliminary design of an active aircraft defense system for the protection of the C/KC-135 aircraft from SAMs. The developed system utilizes a kinetic kill mechanism to protect the aircraft from shoulder launched missiles while the aircraft is in the takeoff and climb-out configurations. Both smart anti-missile expendables and dumb projectile expendables are evaluated. The iterative Systems Engineering approach is used to narrow the solution set to the optimal design. The final outcome is the refined design of two candidate aircraft defense system employing a kinetic kill mechanism. Both systems utilize a modified ultra-violet tracker and employ one of two types of nets, one made out of Detonation Cord and the other made out of Spectra
Geologically constrained evolutionary geomechanical modelling of diapir and basin evolution: a case study from the Tarfaya basin, West African coast
We systematically incorporate burial history, sea floor geometry and tectonic loads from a sequential kinematic restoration model into a 2D evolutionary geomechanical model that simulates the formation of the Sandia salt diapir, Tarfaya basin, NW African Coast. We use a poro-elastoplastic description for the sediment behaviour and a viscoplastic description for the salt. Sedimentation is coupled with salt flow and regional shortening to determine the sediment porosity and strength and to capture the interaction between salt and sediments. We find that temporal and spatial variation in sedimentation rate is a key control on the kinematic evolution of the salt system. Incorporation of sedimentation rates from the kinematic restoration at a location east of Sandia leads to a final geomechanical model geometry very similar to that observed in seismic reflection data. We also find that changes in the variation of shortening rates can significantly affect the present-day stress state above salt. Overall, incorporating kinematic restoration data into evolutionary models provides insights into the key parameters that control the evolution of geologic systems. Furthermore, it enables more realistic evolutionary geomechanical models, which, in turn, provide insights into sediment stress and porosity
A comprehensive study of geothermal heating and cooling systems
The final publication is available at Elsevier via https://doi.org/10.1016/j.scs.2018.09.036� 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Geothermal heat is an energy source that is local, reliable, resilient, environmentally-friendly, and sustainable. This natural energy is produced from the heat within the earth, and has different applications, such as heating and cooling of buildings, generating electricity, providing warm/cold water for agricultural products in greenhouses, and balneological use. Geothermal energy is not dependent on weather or climate and can supply heat and electricity almost continuously throughout the year. It may even be possible to use geothermal projects as �thermal batteries�, wherein waste or collected heat is stored for future use, even seasonal use, making geothermal energy �renewable� at a time scale of years. Extensive research has been carried out on different technologies and applications of geothermal energy, but comprehensive assessment of geothermal heating and cooling systems is relevant because of changing understanding, scale of application, and technology evolution. This study presents a general overview of geothermal heating and cooling systems. We provide an introduction to energy and the environment as well as the relationship between them; a brief history of geothermal energy; a discussion of district energy systems; a review of geothermal heating and cooling systems; a survey of geothermal energy distribution systems; an overview of ground source heat pumps; and, a discussion of ground heat exchangers. Recognition and accommodation of several factors addressed and discussed in our review will enhance the design and implementation of any geothermal heating or cooling system
Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo
<p>Abstract</p> <p>Background</p> <p>Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression.</p> <p>Methods</p> <p>Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2.</p> <p>Results</p> <p>We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate.</p> <p>Conclusions</p> <p>Collectively, our data indicate that Nck2 effectively influences human melanoma phenotype progression. At the molecular level, we propose that Nck2 in human primary melanoma promotes the formation of molecular complexes regulating proliferation and actin cytoskeleton dynamics by modulating kinases or phosphatases activities that results in increased levels of proteins phosphorylated on tyrosine residues. This study provides new insights regarding cancer progression that could impact on the therapeutic strategies targeting cancer.</p
Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates
The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.Leona M. and Harry B. Helmsley Charitable Trust (3-SRA-2014-285-M-R)United States. National Institutes of Health (EB000244)United States. National Institutes of Health (EB000351)United States. National Institutes of Health (DE013023)United States. National Institutes of Health (CA151884)United States. National Institutes of Health (P41EB015871-27)National Cancer Institute (U.S.) (P30-CA14051
Detection of a novel, integrative aging process suggests complex physiological integration
Abstract: Many studies of aging examine biomarkers one at a time, but complex systems theory and
network theory suggest that interpretations of individual markers may be context-dependent.
Here, we attempted to detect underlying processes governing the levels ofmany biomarkers
simultaneously by applying principal components analysis to 43 common clinical biomarkers
measured longitudinally in 3694 humans from three longitudinal cohort studies on two continents
(Women’s Health and Aging I & II, InCHIANTI, and the Baltimore Longitudinal Study on
Aging). The first axis was associated with anemia, inflammation, and low levels of calcium
and albumin. The axis structure was precisely reproduced in all three populations and in all
demographic sub-populations (by sex, race, etc.); we call the process represented by the
axis “integrated albunemia.” Integrated albunemia increases and accelerates with age in all
populations, and predicts mortality and frailty – but not chronic disease – even after controlling
for age. This suggests a role in the aging process, though causality is not yet clear.
Integrated albunemia behaves more stably across populations than its component biomarkers,
and thus appears to represent a higher-order physiological process emerging from the
structure of underlying regulatory networks. If this is correct, detection of this process has
substantial implications for physiological organizationmore generally
Recommended from our members
Evaluation of slurry injection technology for management of drilling wastes.
Each year, thousands of new oil and gas wells are drilled in the United States and around the world. The drilling process generates millions of barrels of drilling waste each year, primarily used drilling fluids (also known as muds) and drill cuttings. The drilling wastes from most onshore U.S. wells are disposed of by removing the liquids from the drilling or reserve pits and then burying the remaining solids in place (called pit burial). This practice has low cost and the approval of most regulatory agencies. However, there are some environmental settings in which pit burial is not allowed, such as areas with high water tables. In the U.S. offshore environment, many water-based and synthetic-based muds and cuttings can be discharged to the ocean if discharge permit requirements are met, but oil-based muds cannot be discharged at all. At some offshore facilities, drilling wastes must be either hauled back to shore for disposal or disposed of onsite through an injection process
- …