46 research outputs found

    Quantifying the interplay between environmental and social effects on aggregated-fish dynamics

    Get PDF
    Demonstrating and quantifying the respective roles of social interactions and external stimuli governing fish dynamics is key to understanding fish spatial distribution. If seminal studies have contributed to our understanding of fish spatial organization in schools, little experimental information is available on fish in their natural environment, where aggregations often occur in the presence of spatial heterogeneities. Here, we applied novel modeling approaches coupled to accurate acoustic tracking for studying the dynamics of a group of gregarious fish in a heterogeneous environment. To this purpose, we acoustically tracked with submeter resolution the positions of twelve small pelagic fish (Selar crumenophthalmus) in the presence of an anchored floating object, constituting a point of attraction for several fish species. We constructed a field-based model for aggregated-fish dynamics, deriving effective interactions for both social and external stimuli from experiments. We tuned the model parameters that best fit the experimental data and quantified the importance of social interactions in the aggregation, providing an explanation for the spatial structure of fish aggregations found around floating objects. Our results can be generalized to other gregarious species and contexts as long as it is possible to observe the fine-scale movements of a subset of individuals.Comment: 10 pages, 5 figures and 4 supplementary figure

    LASER INDUCED REFRACTIVE INDEX GRATINGS IN EU3+ GLASSES

    No full text
    Four wave mixing techniques are used to induce refractive-index gratings in Eu-doped glasses. When the Eu3+ ions are resonantly excited, superimposed transient and permanent gratings are formed. The former is characteristic of population grating, while the latter is attributed to local structural modifications of the glass host induced by high energy "phonons" localized around the Eu3+ ions. The result suggest the use of such gratings for de-multiplexing applications

    FOUR-WAVE STUDIES IN NEW Cr3+ -DOPED GARNET CRYSTALS

    No full text
    No abstract availabl

    Mechanical Analysis of Full-Scale Nb 3 Sn CICC Designs for Tokamaks

    No full text
    International audienceSeveral designs of Nb 3 Sn Cable-In-Conduit Conductors (CICCs) have been proposed so far for high-performance tokamak magnets. The Nb 3 Sn strands composing the conductors are subjected to mechanical stresses of electromagnetic (EM) and thermal origin, inducing local deformations and affecting the strands critical current carrying capability. In the last ten years a numerical tool based on a finite element (FE) code has been developed to simulate the mechanical behavior of the CICCs subjected to operating loads. The main goal of this tool is to predict the electro-mechanical performance of the conductor in operation as a function of the design parameters such as the void fraction, the twist pitches and the conductor shape. In this work, a detailed model of a full-cable ITER TF CICC is presented. This model proves useful for a deeper understanding of the mechanical phenomena occurring among the sub-cables during the conductor operation. Moreover, the numerical modelling of different conductors from the ITER, DTT and JT60 projects is also presented to highlight the versatility of the code

    SiC-Fiber Reinforced Cordierite: Influence of Matrix Modifications on Mechanical Properties

    No full text

    Advanced Modeling of Electromagnetic Loading of Cable-in-Conduit Conductors for Fusion Magnets

    No full text
    The electrical performance degradation of Nb3Sn cables in the Cable-in-Conduit Conductors CICC has been well documented in literature. The Nb3Sn composite strands exhibit a critical current density that strongly depends on the strain state of the superconducting filaments. During a fusion magnet operation, the conductors are submitted to several electromagnetic and thermal cycles affecting the Nb3Sn mechanical state and consequently the capacity of the conductors to transport current. Different studies based on both a macroscopic and microscopic approaches have been performed so far to identify the mechanisms determining the conductors' behavior. Nevertheless, no theory permitting to predict the electrical performance of cyclically loaded conductors has been developed yet. Therefore, a solid electromechanical model able to tackle the analysis of CICC for fusion cables when they undergo thousands of cyclic loadings would be very useful. In this paper an advanced mechanical model to study the mechanical behavior of ITER TF CICC based on an improved version of the MULTIFIL finite element code is presented. A correction is introduced to solve the problem of the large impact of the boundary conditions in the simulation of the thermal loading, encountered in a previous work. A novel methodology to identify the value of thermal strain to be applied in cool-down simulations has also been developed. The model was adapted to take into account the Lorentz force cumulative effect of the other petals on the one under analysis. An assessment of the electromagnetic behavior based on the mechanical analysis is also presented
    corecore