84 research outputs found

    Two different quasiparticle scattering rates in vortex line liquid phase of layered d-wave superconductors

    Get PDF
    We carry out a quantum mechanical analysis of the behavior of nodal quasiparticles in the vortex line liquid phase of planar d-wave superconductors. Applying a novel path integral technique we calculate a number of experimentally relevant observables and demonstrate that in the low-field regime the quasiparticle scattering rates deduced from photoemission and thermal transport data can be markedly different from that extracted from tunneling, specific heat, superfluid stiffness or spin-lattice relaxation time.Comment: Latex, 4 pages, no figure

    Quantum Criticality and Superconductivity in Quasi-Two-Dimensional Dirac Electronic Systems

    Full text link
    We present a theory describing the superconducting (SC) interaction of Dirac electrons in a quasi-two-dimensional system consisting of a stack of N planes. The occurrence of a SC phase is investigated both at T=0 and T\neq 0, in the case of a local interaction, when the theory must be renormalized and also in the situation where a natural physical cutoff is present in the system. In both cases, at T=0, we find a quantum phase transition connecting the normal and SC phases at a certain critical coupling. The phase structure is shown to be robust against quantum fluctuations. The SC gap is determined for T=0 and T\neq 0, both with and without a physical cutoff and the interplay between the gap and the SC order parameter is discussed. Our theory qualitatively reproduces the SC phase transition occurring in the underdoped regime of the high-Tc cuprates. This fact points to the possible relevance of Dirac electrons in the mechanism of high-Tc superconductivity.Comment: To be published in Nuclear Physics, Section B. 24 pages, 4 figure

    Fractional electric charge of a magnetic vortex at nonzero temperature

    Full text link
    An ideal gas of twodimensional Dirac fermions in the background of a pointlike magnetic vortex with arbitrary flux is considered. We find that this system acquires fractional electric charge at finite temperatures and determine the functional dependence of the thermal average and quadratic fluctuation of the charge on the temperature, the vortex flux, and the continuous parameter of the boundary condition at the location of the vortex.Comment: 25 pages, 5 figures, journal version, minor changes, Eqs.(3.2)-(3.5) correcte

    Novel anisotropy in the superconducting gap structure of Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} probed by quasiparticle heat transport

    Full text link
    Since the nature of pairing interactions is manifested in the superconducting gap symmetry, the exact gap structure, particularly any deviation from the simple d_{x^2-y^2} symmetry, would help elucidating the pairing mechanism in high-T_c cuprates. Anisotropic heat transport measurement in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} (Bi-2212) reveals that the quasiparticle populations are different for the two nodal directions and thus the gap structure must be uniquely anisotropic, suggesting that pairing is governed by interactions with a rather complicated anisotropy. Intriguingly, it is found that the "plateau" in the magnetic-field dependence of the thermal conductivity is observed only in the b-axis transport.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let

    Theories of Low-Energy Quasi-Particle States in Disordered d-Wave Superconductors

    Full text link
    The physics of low-energy quasi-particle excitations in disordered d-wave superconductors is a subject of ongoing intensive research. Over the last decade, a variety of conceptually and methodologically different approaches to the problem have been developed. Unfortunately, many of these theories contradict each other, and the current literature displays a lack of consensus on even the most basic physical observables. Adopting a symmetry-oriented approach, the present paper attempts to identify the origin of the disagreement between various previous approaches, and to develop a coherent theoretical description of the different low-energy regimes realized in weakly disordered d-wave superconductors. We show that, depending on the presence or absence of time-reversal invariance and the microscopic nature of the impurities, the system falls into one of four different symmetry classes. By employing a field-theoretical formalism, we derive effective descriptions of these universal regimes as descendants of a common parent field theory of Wess-Zumino-Novikov-Witten type. As well as describing the properties of each universal regime, we analyse a number of physically relevant crossover scenarios, and discuss reasons for the disagreement between previous results. We also touch upon other aspects of the phenomenology of the d-wave superconductor such as quasi-particle localization properties, the spin quantum Hall effect, and the quasi-particle physics of the disordered vortex lattice.Comment: 42 Pages, 8 postscript figures, published version with updated reference

    Low temperature superfluid stiffness of d-wave superconductor in a magnetic field

    Full text link
    The temperature and field dependence of the superfluid density ρs\rho_s in the vortex state of a d-wave superconductor are calculated using a microscopic model in the quasiclassical approximation. We show that at temperatures below T^{*} \varpropto \sqrt{H}$, the linear T dependence of rho_s crosses over to a T^2 dependence differently from the behavior of the effective penetration depth, lambda_eff^{-2}(T). We point out that the expected dependences could be probed by a mutual-inductance technique experiment.Comment: 4 pages, RevTeX4, 2 EPS figures; minor revisions made and 1 new reference added; final version published in PR

    Phase fluctuations, dissipation and superfluid stiffness in d-wave superconductors

    Full text link
    We study the effect of dissipation on quantum phase fluctuations in d-wave superconductors. Dissipation, arising from a nonzero low frequency optical conductivity which has been measured in experiments below TcT_c, has two effects: (1) a reduction of zero point phase fluctuations, and (2) a reduction of the temperature at which one crosses over to classical thermal fluctuations. For parameter values relevant to the cuprates, we show that the crossover temperature is still too large for classical phase fluctuations to play a significant role at low temperature. Quasiparticles are thus crucial in determining the linear temperature dependence of the in-plane superfluid stiffness. Thermal phase fluctuations become important at higher temperatures and play a role near TcT_c.Comment: Presentation improved, new references added (10 latex pages, 3 eps figures). submitted to PR
    corecore