The physics of low-energy quasi-particle excitations in disordered d-wave
superconductors is a subject of ongoing intensive research. Over the last
decade, a variety of conceptually and methodologically different approaches to
the problem have been developed. Unfortunately, many of these theories
contradict each other, and the current literature displays a lack of consensus
on even the most basic physical observables. Adopting a symmetry-oriented
approach, the present paper attempts to identify the origin of the disagreement
between various previous approaches, and to develop a coherent theoretical
description of the different low-energy regimes realized in weakly disordered
d-wave superconductors. We show that, depending on the presence or absence of
time-reversal invariance and the microscopic nature of the impurities, the
system falls into one of four different symmetry classes. By employing a
field-theoretical formalism, we derive effective descriptions of these
universal regimes as descendants of a common parent field theory of
Wess-Zumino-Novikov-Witten type. As well as describing the properties of each
universal regime, we analyse a number of physically relevant crossover
scenarios, and discuss reasons for the disagreement between previous results.
We also touch upon other aspects of the phenomenology of the d-wave
superconductor such as quasi-particle localization properties, the spin quantum
Hall effect, and the quasi-particle physics of the disordered vortex lattice.Comment: 42 Pages, 8 postscript figures, published version with updated
reference