101 research outputs found

    Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease

    Get PDF
    Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regulation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002). Taken together, these results confirm and expand previous microarray expression profile data in sCJD. Most significantly, they also demonstrate the involvement of the endosomal-lysosomal system. Since the latter is a common pathogenic pathway linking together diseases, such as Alzheimer’s and Parkinson’s, it might be the focus of future studies aimed to identify new therapeutic targets in neurodegenerative diseases

    From Analogical Proportion to Logical Proportions

    Get PDF
    International audienceGiven a 4-tuple of Boolean variables (a, b, c, d), logical proportions are modeled by a pair of equivalences relating similarity indicators ( a∧b and a¯∧b¯), or dissimilarity indicators ( a∧b¯ and a¯∧b) pertaining to the pair (a, b), to the ones associated with the pair (c, d). There are 120 semantically distinct logical proportions. One of them models the analogical proportion which corresponds to a statement of the form “a is to b as c is to d”. The paper inventories the whole set of logical proportions by dividing it into five subfamilies according to what they express, and then identifies the proportions that satisfy noticeable properties such as full identity (the pair of equivalences defining the proportion hold as true for the 4-tuple (a, a, a, a)), symmetry (if the proportion holds for (a, b, c, d), it also holds for (c, d, a, b)), or code independency (if the proportion holds for (a, b, c, d), it also holds for their negations (a¯,b¯,c¯,d¯)). It appears that only four proportions (including analogical proportion) are homogeneous in the sense that they use only one type of indicator (either similarity or dissimilarity) in their definition. Due to their specific patterns, they have a particular cognitive appeal, and as such are studied in greater details. Finally, the paper provides a discussion of the other existing works on analogical proportions

    COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord

    Get PDF
    BACKGROUND: While multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) are primarily inflammatory and degenerative disorders respectively, there is increasing evidence for shared cellular mechanisms that may affect disease progression, particularly glial responses. Cyclooxygenase 2 (COX-2) inhibition prolongs survival and cannabinoids ameliorate progression of clinical disease in animal models of ALS and MS respectively, but the mechanism is uncertain. Therefore, three key molecules known to be expressed in activated microglial cells/macrophages, COX-2, CB2 and P2X7, which plays a role in inflammatory cascades, were studied in MS and ALS post-mortem human spinal cord. METHODS: Frozen human post mortem spinal cord specimens, controls (n = 12), ALS (n = 9) and MS (n = 19), were available for study by immunocytochemistry and Western blotting, using specific antibodies to COX-2, CB2 and P2X7, and markers of microglial cells/macrophages (CD 68, ferritin). In addition, autoradiography for peripheral benzodiazepine binding sites was performed on some spinal cord sections using [3H] (R)-PK11195, a marker of activated microglial cells/macrophages. Results of immunostaining and Western blotting were quantified by computerized image and optical density analysis respectively. RESULTS: In control spinal cord, few small microglial cells/macrophages-like COX-2-immunoreactive cells, mostly bipolar with short processes, were scattered throughout the tissue, whilst MS and ALS specimens had significantly greater density of such cells with longer processes in affected regions, by image analysis. Inflammatory cell marker CD68-immunoreactivity, [3H] (R)-PK11195 autoradiography, and double-staining against ferritin confirmed increased production of COX-2 by activated microglial cells/macrophages. An expected 70-kDa band was seen by Western blotting which was significantly increased in MS spinal cord. There was good correlation between the COX-2 immunostaining and optical density of the COX-2 70-kDa band in the MS group (r = 0.89, P = 0.0011, n = 10). MS and ALS specimens also had significantly greater density of P2X7 and CB2-immunoreactive microglial cells/macrophages in affected regions. CONCLUSION: It is hypothesized that the known increase of lesion-associated extracellular ATP contributes via P2X7 activation to release IL-1 beta which in turn induces COX-2 and downstream pathogenic mediators. Selective CNS-penetrant COX-2 and P2X7 inhibitors and CB2 specific agonists deserve evaluation in the progression of MS and ALS

    Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injury: a time-course study

    Get PDF
    BACKGROUND: Recent studies show that inflammatory processes may contribute to neuropathic pain. Cyclooxygenase-2 (Cox-2) is an inducible enzyme responsible for production of prostanoids, which may sensitise sensory neurones via the EP1 receptor. We have recently reported that while macrophages infiltrate injured nerves within days of injury, they express increased Cox-2-immunoreactivity (Cox-2-IR) from 2 to 3 weeks after injury. We have now investigated the time course of EP1 and Cox-2 changes in injured human nerves and dorsal root ganglia (DRG), and the chronic constriction nerve injury (CCI) model in the rat. METHODS: Tissue sections were immunostained with specific antibodies to EP1, Cox-2, CD68 (human macrophage marker) or OX42 (rat microglial marker), and neurofilaments (NF), prior to image analysis, from the following: human brachial plexus nerves (21 to 196 days post-injury), painful neuromas (9 days to 12 years post-injury), avulsion injured DRG, control nerves and DRG, and rat CCI model tissues. EP1 and NF-immunoreactive nerve fibres were quantified by image analysis. RESULTS: EP1:NF ratio was significantly increased in human brachial plexus nerve fibres, both proximal and distal to injury, in comparison with uninjured nerves. Sensory neurones in injured human DRG showed a significant acute increase of EP1-IR intensity. While there was a rapid increase in EP1-fibres and CD-68 positive macrophages, Cox-2 increase was apparent later, but was persistent in human painful neuromas for years. A similar time-course of changes was found in the rat CCI model with the above markers, both in the injured nerves and ipsilateral dorsal spinal cord. CONCLUSION: Different stages of infiltration and activation of macrophages may be observed in the peripheral and central nervous system following peripheral nerve injury. EP1 receptor level increase in sensory neurones, and macrophage infiltration, appears to precede increased Cox-2 expression by macrophages. However, other methods for detecting Cox-2 levels and activity are required. EP1 antagonists may show therapeutic effects in acute and chronic neuropathic pain, in addition to inflammatory pain

    The General Transcriptional Repressor Tup1 Is Required for Dimorphism and Virulence in a Fungal Plant Pathogen

    Get PDF
    A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens

    Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions.

    Get PDF
    The molecular alterations that occur in cells before cancer is manifest are largely uncharted. Lung carcinoma in situ (CIS) lesions are the pre-invasive precursor to squamous cell carcinoma. Although microscopically identical, their future is in equipoise, with half progressing to invasive cancer and half regressing or remaining static. The cellular basis of this clinical observation is unknown. Here, we profile the genomic, transcriptomic, and epigenomic landscape of CIS in a unique patient cohort with longitudinally monitored pre-invasive disease. Predictive modeling identifies which lesions will progress with remarkable accuracy. We identify progression-specific methylation changes on a background of widespread heterogeneity, alongside a strong chromosomal instability signature. We observed mutations and copy number changes characteristic of cancer and chart their emergence, offering a window into early carcinogenesis. We anticipate that this new understanding of cancer precursor biology will improve early detection, reduce overtreatment, and foster preventative therapies targeting early clonal events in lung cancer

    Structural synaptic elements are differentially regulated in superior temporal cortex of schizophrenia patients

    Get PDF
    Inaccurate wiring and synaptic pathology appear to be major hallmarks of schizophrenia. A variety of gene products involved in synaptic neurotransmission and receptor signaling are differentially expressed in brains of schizophrenia patients. However, synaptic pathology may also develop by improper expression of intra- and extra-cellular structural elements weakening synaptic stability. Therefore, we have investigated transcription of these elements in the left superior temporal gyrus of 10 schizophrenia patients and 10 healthy controls by genome-wide microarrays (Illumina). Fourteen up-regulated and 22 downregulated genes encoding structural elements were chosen from the lists of differentially regulated genes for further qRT-PCR analysis. Almost all genes confirmed by this method were downregulated. Their gene products belonged to vesicle-associated proteins, that is, synaptotagmin 6 and syntaxin 12, to cytoskeletal proteins, like myosin 6, pleckstrin, or to proteins of the extracellular matrix, such as collagens, or laminin C3. Our results underline the pivotal roles of structural genes that control formation and stabilization of pre- and post-synaptic elements or influence axon guidance in schizophrenia. The glial origin of collagen or laminin highlights the close interrelationship between neurons and glial cells in establishment and maintenance of synaptic strength and plasticity. It is hypothesized that abnormal expression of these and related genes has a major impact on the pathophysiology of schizophrenia. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00406-012-0306-y) contains supplementary material, which is available to authorized users

    Gene expression in superior temporal cortex of schizophrenia patients

    No full text
    We investigated gene expression pattern obtained from microarray data of 10 schizophrenia patients and 10 control subjects. Brain tissue samples were obtained postmortem; thus, the different ages of the patients at death also allowed a study of the dynamic behavior of the expression patterns over a time frame of many years. We used statistical tests and dimensionality reduction methods to characterize the subset of genes differentially expressed in the two groups. A set of 10 genes were significantly downregulated, and a larger set of 40 genes were upregulated in the schizophrenia patients. Interestingly, the set of upregulated genes includes a large number of genes associated with gene transcription (zinc finger proteins and histone methylation) and apoptosis. We furthermore identified genes with a significant trend correlating with age in the control (MLL3) or the schizophrenia group (SOX5, CTRL). Assessments of correlations of other genes with the disorder (RRM1) or with the durati

    Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study

    Get PDF
    Neurodegenerative diseases of the central nervous system are characterized by pathogenetic cellular and molecular changes in specific areas of the brain that lead to the dysfunction and/or loss of explicit neuronal populations. Despite exhibiting different clinical profiles and selective neuronal loss, common features such as abnormal protein deposition, dysfunctional cellular transport, mitochondrial deficits, glutamate excitotoxicity, iron accumulation and inflammation are observed in many neurodegenerative disorders, suggesting converging pathways of neurodegeneration. We have generated comparative genome-wide gene expression data, using the Illumina HumanRef 8 Beadchip, for Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, Parkinson's disease, and schizophrenia using an extensive cohort (n = 113) of well-characterized post-mortem brain tissues. The analysis of whole-genome expression patterns across these major disorders offers an outstanding opportunity not only to look into exclusive disease-specific changes, but more importantly to look for potential common molecular pathogenic mechanisms. Surprisingly, no dysregulated gene that passed our selection criteria was found in common across all six diseases. However, 61 dysregulated genes were shared when comparing five and four diseases. The few genes highlighted by our direct gene comparison analysis hint toward common neuronal homeostatic, survival and synaptic plasticity pathways. In addition, we report changes to several inflammation-related genes in all diseases. This work is supportive of a general role of the innate immune system in the pathogenesis and/or response to neurodegeneration
    corecore