1,162 research outputs found
Classical and Non-Relativistic Limits of a Lorentz-Invariant Bohmian Model for a System of Spinless Particles
A completely Lorentz-invariant Bohmian model has been proposed recently for
the case of a system of non-interacting spinless particles, obeying
Klein-Gordon equations. It is based on a multi-temporal formalism and on the
idea of treating the squared norm of the wave function as a space-time
probability density. The particle's configurations evolve in space-time in
terms of a parameter {\sigma}, with dimensions of time. In this work this model
is further analyzed and extended to the case of an interaction with an external
electromagnetic field. The physical meaning of {\sigma} is explored. Two
special situations are studied in depth: (1) the classical limit, where the
Einsteinian Mechanics of Special Relativity is recovered and the parameter
{\sigma} is shown to tend to the particle's proper time; and (2) the
non-relativistic limit, where it is obtained a model very similar to the usual
non-relativistic Bohmian Mechanics but with the time of the frame of reference
replaced by {\sigma} as the dynamical temporal parameter
Determination of SU(2) ChPT LECs from 2+1 flavor staggered lattice simulations
By fitting pion masses and decay constants from 2+1 flavor staggered lattice
simulations to the predictions of NLO and NNLO SU(2) chiral perturbation theory
we determine the low-energy constants l_3 and l_4. The lattice ensembles were
generated by the Wuppertal-Budapest collaboration and cover pion masses in the
range of 135 to 435 MeV and lattice scales between 0.7 and 2.0 GeV. By choosing
a suitable scaling trajectory, we were able to demonstrate that precise and
stable results for the LECs can be obtained from continuum ChPT to NLO. The
pion masses available in this work also allow us to study the applicability of
using ChPT to extrapolate from higher masses to the physical pion mass.Comment: 8 pages, 8 figures, 1 table, talk presented at Xth Quark Confinement
and the Hadron Spectrum, Munich, October 201
QCD thermodynamics with dynamical overlap fermions
We study QCD thermodynamics using two flavors of dynamical overlap fermions
with quark masses corresponding to a pion mass of 350 MeV. We determine several
observables on N_t=6 and 8 lattices. All our runs are performed with fixed
global topology. Our results are compared with staggered ones and a nice
agreement is found.Comment: 14 pages, 6 figures, 1 tabl
SU(2) chiral perturbation theory low-energy constants from 2+1 flavor staggered lattice simulations
We extract the next-to-leading-order low-energy constants \bar\ell_3 and
\bar\ell_4 of SU(2) chiral perturbation theory, based on precise lattice data
for the pion mass and decay constant on ensembles generated by the
Wuppertal-Budapest Collaboration for QCD thermodynamics. These ensembles
feature 2+1 flavors of two-fold stout-smeared dynamical staggered fermions
combined with Symanzik glue, with pion masses varying from 135 to 435 MeV,
lattice scales between 0.7 and 2.0 GeV, while m_s is kept fixed at its physical
value. Moderate taste splittings and the scale being set through the pion decay
constant allow us to restrict ourselves to the taste pseudoscalar state and to
use formulas from continuum chiral perturbation theory. Finally, by dropping
the data points near 135 MeV from the fits, we can explore the range of pion
masses that is needed in SU(2) chiral perturbation theory to reliably
extrapolate to the physical point.Comment: 40 pages, 22 figures, 3 tables; v2: expanded discussion, matches
published versio
The ratio FK/Fpi in QCD
We determine the ratio FK/Fpi in QCD with Nf=2+1 flavors of sea quarks, based
on a series of lattice calculations with three different lattice spacings,
large volumes and a simulated pion mass reaching down to about 190 MeV. We
obtain FK/Fpi=1.192 +/- 0.007(stat) +/- 0.006(syst). This result is then used
to give an updated value of the CKM matrix element |Vus|. The unitarity
relation for the first row of this matrix is found to be well observed.Comment: 15 pages, 4 figures, 2 table
Diquark effects in light baryon correlators from lattice QCD
We study the role of diquarks in light baryons through point to point baryon
correlators. We contrast results from quenched simulations with ones with two
flavors of dynamical overlap fermions. The scalar, pseudoscalar and axial
vector diquarks are combined with light quarks to form color singlets. The
quenched simulation shows large zero mode effects in correlators containing the
scalar and pseudoscalar diquark. The two scalar diquarks created by gamma_5 and
gamma_0gamma_5 lead to different behavior in baryon correlators, showing that
the interaction of diquarks with the third light quark matters: we do not see
an isolated diquark. In our quark mass range, the scalar diquark created by
gamma_5 seems to play a greater role than the others.Comment: 12 pages, 11 figure
Chiral behavior of pseudo-Goldstone boson masses and decay constants in 2+1 flavor QCD
We present preliminary results for the chiral behavior of charged
pseudo-Goldstone-boson masses and decay constants. These are obtained in
simulations with N_f=2+1 flavors of tree-level, O(a)-improved Wilson sea
quarks. In these simulations, mesons are composed of either valence quarks
discretized in the same way as the sea quarks (unitary simulations) or of
overlap valence quarks (mixed-action simulations). We find that the chiral
behavior of the pseudoscalar meson masses in the mixed-action calculations
cannot be explained with continuum, partially-quenched chiral perturbation
theory. We show that the inclusion of O(a^2) unitarity violations in the chiral
expansion resolves this discrepancy and that the size of the unitarity
violations required are consistent with those which we observe in the
zero-momentum, scalar-isotriplet-meson propagator.Comment: 7 pages, 3 figures, talk by L. Lellouch at the XXV International
Symposium on Lattice Field Theory (LATTICE 2007), 30 July - 4 August 2007,
Regensburg, German
- …