12 research outputs found

    Artificial neural network for Gaussian and non-Gaussian random fatigue loading analysis

    Get PDF
    There has been a lot of work done on the analysis of Gaussian loading analysis perhaps because its occurrence is more common than non-Gaussian loading problems. It is nevertheless known that non-Gaussian load occurs in many instances especially in various forms of transport, land, sea and space. Part of the challenge with non-Gaussian loading analysis is the increased number of variables that are needed to model the loading adequately. Artificial neural network approach provides a versatile means to develop models that may require many input variables in order to achieve applicable predictive generalisation capabilities. Artificial neural network has been shown to perform much better than existing frequency domain methods for random fatigue loading under stationary Gaussian load forms especially when mean stress effects are included. This paper presents an artificial neural network model with greater predictive capability than existing frequency domain methods for both Gaussian and non-Gaussian loading analysis. Both platykurtic and leptokurtic non-Gaussian loading cases were considered to demonstrate the scope of application. The model was also validated with available SAE experimental data, even though the skewness and kurtosis of the signal in this case were mild

    Hyperelastic polymer material models for robust fatigue performance of automotive LED lamps

    Get PDF
    The object of this paper is to determine the statistics of parameters of hyperelastic models specific to Polybutylene Terephthalate filled with 30% glass fibre (PBT GF30) and Polymethyl Methacrylate (PMMA) materials used in automotive lamps. The hyperelastic behaviour of both materials, a semi-crystalline and an amorphous, is modelled using appropriate hyperelastic models. The stress-strain curves of the materials were measured under uniaxial tension using a non-contact video gauge. Five samples each were tested to measure the effect of manufacturing variability. The model parameter statistics were determined, the mean value of the model parameters were used to construct average stress-strain behavior, which is then compared to the experimental stresses. Among all the models and their associated parameters studied, the 3-parameter Mooney-Rivlin model provided the most accurate prediction of the behaviour for both materials. The model showed excellent stability and is therefore the most appropriate model to represent variations due to the manufacturing process. The detailed study of the correlation of the model parameters provided a good understanding of how the parameters are related to each other, enabling construction of complete probability distribution functions for further analysis

    Elasto-Plastic Stress Analysis in Rotating Disks and Pressure Vessels Made of Functionally Graded Materials

    Get PDF
    Abstract A new elastio-plastic stress solution in axisymmetric problems (rotating disk, cylindrical and spherical vessel) is presented. The rotating disk (cylindrical and spherical vessel) was made of a ceramic/metal functionally graded material, i.e. a particle-reinforced composite. It was assumed that the material's plastic deformation follows an isotropic strain-hardening rule based on the von-Mises yield criterion. The mechanical properties of the graded material were modeled by the modified rule of mixtures. By assuming small strains, Hencky's stress-strain relation was used to obtain the governing differential equations for the plastic region. A numerical method for solving those differential equations was then proposed that enabled the prediction of stress state within the structure. Selected finite element results were also presented to establish supporting evidence for the validation of the proposed approach

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore