156 research outputs found
Recommended from our members
Inhibition or stimulation of ochratoxin a synthesis on inoculated barley triggered by diffuse coplanar surface barrier discharge plasma
Ochratoxin A (OTA) is one of the most abundant food-contaminating mycotoxins. Besides their high toxicity, mycotoxins are highly stable to physical, chemical or biological detoxification. Therefore, the treatment with cold atmospheric plasma could be one approach to reduce the amount of mycotoxins in different products. The aim of this study was to determine the influence of cold atmospheric plasma on the inactivation of Aspergillus niger and Penicillium verrucosum inoculated on barley and their production of OTA. Inoculated barley was treated with plasma generated by dry air, CO2 or CO2 + O2 for 1 or 3 min and stored for up to two weeks at 9, 25, or 37°C. Three minutes of air plasma treatment effectively significantly reduced the total mold count of both microorganisms by 2.5–3 log cycles. The production of OTA from A. niger was only low, therefore the treatment effect was indistinguishable. The treatment of P. verrucosum on barley after an incubation of five days using a CO2 + O2 plasma resulted in a reduction of the OTA content from 49.0 (untreated) to 27.5 (1 min) and 23.8 ng/g (3 min), respectively. In contrast, CO2 plasma caused an increase of the OTA amount from 49.0 (untreated) to 55.8 (1 min) and 72.9 ng/g (3 min). Finally, the use of air plasma resulted likewise in a decrease of the OTA concentration from 56.9 (untreated) to 25.7 (1 min) and 20.2 ng/g (3 min), respectively. Reducing the incubation time before the treatment to 24 h caused in contrast an increase of the OTA content from 3.1 (untreated) to 29.1 (1 min) and 20.7 ng/g (3 min). Due to the high standard deviation, these changes were not significant, but the tendencies were clearly visible, showing the strong impact of the plasma gas on the OTA production. The results show, that even if the total mold count was reduced, under certain conditions the OTA amount was yet enhanced, probably due to a stress reaction of the mold. Concluding, the plasma gas and incubation conditions have to be considered to allow a successful inactivation of molds and in particular their toxic metabolites
Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain
Loss-of-function mutations of NaV1.7 lead to congenital insensitivity to pain, a rare condition resulting in individuals who are otherwise normal except for the inability to sense pain, making pharmacological inhibition of NaV1.7 a promising therapeutic strategy for the treatment of pain. We characterized a novel mouse model of NaV1.7-mediated pain based on intraplantar injection of the scorpion toxin OD1, which is suitable for rapid in vivo profiling of NaV1.7 inhibitors. Intraplantar injection of OD1 caused spontaneous pain behaviors, which were reversed by co-injection with NaV1.7 inhibitors and significantly reduced in NaV1.7−/− mice. To validate the use of the model for profiling NaV1.7 inhibitors, we determined the NaV selectivity and tested the efficacy of the reported NaV1.7 inhibitors GpTx-1, PF-04856264 and CNV1014802 (raxatrigine). GpTx-1 selectively inhibited NaV1.7 and was effective when co-administered with OD1, but lacked efficacy when delivered systemically. PF-04856264 state-dependently and selectively inhibited NaV1.7 and significantly reduced OD1-induced spontaneous pain when delivered locally and systemically. CNV1014802 state-dependently, but non-selectively, inhibited NaV channels and was only effective in the OD1 model when delivered systemically. Our novel model of NaV1.7-mediated pain based on intraplantar injection of OD1 is thus suitable for the rapid in vivo characterization of the analgesic efficacy of NaV1.7 inhibitors
Computer-assisted curation of a human regulatory core network from the biological literature
Motivation: A highly interlinked network of transcription factors (TFs) orchestrates the context-dependent expression of human genes. ChIP-chip experiments that interrogate the binding of particular TFs to genomic regions are used to reconstruct gene regulatory networks at genome-scale, but are plagued by high false-positive rates. Meanwhile, a large body of knowledge on high-quality regulatory interactions remains largely unexplored, as it is available only in natural language descriptions scattered over millions of scientific publications. Such data are hard to extract and regulatory data currently contain together only 503 regulatory relations between human TFs.
Results: We developed a text-mining-assisted workflow to systematically extract knowledge about regulatory interactions between human TFs from the biological literature. We applied this workflow to the entire Medline, which helped us to identify more than 45 000 sentences potentially describing such relationships. We ranked these sentences by a machine-learning approach. The top-2500 sentences contained ∼900 sentences that encompass relations already known in databases. By manually curating the remaining 1625 top-ranking sentences, we obtained more than 300 validated regulatory relationships that were not present in a regulatory database before. Full-text curation allowed us to obtain detailed information on the strength of experimental evidences supporting a relationship.
Conclusions: We were able to increase curated information about the human core transcriptional network by >60% compared with the current content of regulatory databases. We observed improved performance when using the network for disease gene prioritization compared with the state-of-the-art.
Availability and implementation: Web-service is freely accessible athttp://fastforward.sys-bio.net/.FWN – Publicaties zonder aanstelling Universiteit Leide
Motif-All: discovering all phosphorylation motifs
Background: Phosphorylation motifs represent common patterns around the phosphorylation site. The discovery of such kinds of motifs reveals the underlying regulation mechanism and facilitates the prediction of unknown phosphorylation event. To date, people have gathered large amounts of phosphorylation data, making it possible to perform substrate-driven motif discovery using data mining techniques. Results: We describe an algorithm called Motif-All that is able to efficiently identify all statistically significant motifs. The proposed method explores a support constraint to reduce search space and avoid generating random artifacts. As the number of phosphorylated peptides are far less than that of unphosphorylated ones, we divide the mining process into two stages: The first step generates candidates from the set of phosphorylated sequences using only support constraint and the second step tests the statistical significance of each candidate using the odds ratio derived from the whole data set. Experimental results on real data show that Motif-All outperforms current algorithms in terms of both effectiveness and efficiency. Conclusions: Motif-All is a useful tool for discovering statistically significant phosphorylation motifs. Source codes and data sets are available at: http://bioinformatics.ust.hk/MotifAll.rar
PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor
The PhosPhAt database provides a resource consolidating our current knowledge of mass spectrometry-based identified phosphorylation sites in Arabidopsis and combines it with phosphorylation site prediction specifically trained on experimentally identified Arabidopsis phosphorylation motifs. The database currently contains 1187 unique tryptic peptide sequences encompassing 1053 Arabidopsis proteins. Among the characterized phosphorylation sites, there are over 1000 with unambiguous site assignments, and nearly 500 for which the precise phosphorylation site could not be determined. The database is searchable by protein accession number, physical peptide characteristics, as well as by experimental conditions (tissue sampled, phosphopeptide enrichment method). For each protein, a phosphorylation site overview is presented in tabular form with detailed information on each identified phosphopeptide. We have utilized a set of 802 experimentally validated serine phosphorylation sites to develop a method for prediction of serine phosphorylation (pSer) in Arabidopsis. An analysis of the current annotated Arabidopsis proteome yielded in 27 782 predicted phosphoserine sites distributed across 17 035 proteins. These prediction results are summarized graphically in the database together with the experimental phosphorylation sites in a whole sequence context. The Arabidopsis Protein Phosphorylation Site Database (PhosPhAt) provides a valuable resource to the plant science community and can be accessed through the following link http://phosphat.mpimp-golm.mpg.d
Plasma applications for the treatment of bean sprouts : safety, quality and nutritional assessments under aqueous and gaseous set-ups
Sprouts are particularly prone to microbial contamination due to their high nutrient content and the warm temperatures and humid conditions needed for their production. Therefore, disinfection is a crucial step in food processing as a means of preventing the transmission of bacterial, parasitic and viral pathogens. In this study, a dielectric coplanar surface barrier discharge (DCSBD) system was used for the application of cold atmospheric plasma (CAP), plasma activated water (PAW) and their combination on mung bean seeds. Overall, it was found that the combined seed treatment with direct air CAP (350 W) and air PAW had no negative impact on mung bean seed germination and growth, nor the concentration of secondary metabolites within the sprouts. These treatments also reduced the total microbial population in sprouts by 2.5 log CFU/g. This research reports for first time that aside from the stimulatory effect of plasma discharge on seed surface disinfection, sustained plasma treatment through irrigation of treated seeds with PAW can significantly enhance seedling growth. The positive outcome and further applications of different forms, of plasma i.e., gaseous and aqueous, in the agro-food industry is further supported by this research.peer-reviewe
Aqueous and gaseous plasma applications for the treatment of mung bean seeds
Sprouts are particularly prone to microbial contamination due to their high nutrient content and the
warm temperatures and humid conditions needed for their production. Therefore, disinfection is a
crucial step in food processing as a means of preventing the transmission of bacterial, parasitic and
viral pathogens. In this study, a dielectric coplanar surface barrier discharge (DCSBD) system was
used for the application of cold atmospheric plasma (CAP), plasma activated water (PAW) and their
combination on mung bean seeds. Germination assessments were performed in a test tube set-up
flled with glass beads and the produced irrigation water. Overall, it was found that the combined
seed treatment with direct air CAP (350W) and air PAW had no negative impact on mung bean
seed germination and growth, nor the concentration of secondary metabolites within the sprouts.
These treatments also reduced the total microbial population in sprouts by 2.5 log CFU/g. This
research reports for frst time that aside from the stimulatory efect of plasma discharge on seed
surface disinfection, sustained plasma treatment through irrigation of treated seeds with PAW can
signifcantly enhance seedling growth. The positive outcome and further applications of diferent
forms, of plasma i.e., gaseous and aqueous, in the agro-food industry is further supported by this
research.peer-reviewe
Efficient chemical synthesis of human complement protein C3a
We report the total chemical synthesis of human C3a by one-pot native chemical ligation of three unprotected peptide segments, followed by efficient in vitro folding that yielded the anaphylatoxin C3a in high yield and excellent purity. Synthetic C3a was fully active and its crystal structure at 2.1 Å resolution showed 3 helices and a C-terminal turn motif
Plasma applications for the treatment of bean sprouts : safety, quality and nutritional assessments under aqueous and gaseous set-ups
Sprouts are particularly prone to microbial contamination due to their high nutrient content and the warm temperatures and humid conditions needed for their production. Therefore, disinfection is a crucial step in food processing as a means of preventing the transmission of bacterial, parasitic and viral pathogens. In this study, a dielectric coplanar surface barrier discharge (DCSBD) system was used for the application of cold atmospheric plasma (CAP), plasma activated water (PAW) and their combination on mung bean seeds. Overall, it was found that the combined seed treatment with direct air CAP (350 W) and air PAW had no negative impact on mung bean seed germination and growth, nor the concentration of secondary metabolites within the sprouts. These treatments also reduced the total microbial population in sprouts by 2.5 log CFU/g. This research reports for first time that aside from the stimulatory effect of plasma discharge on seed surface disinfection, sustained plasma treatment through irrigation of treated seeds with PAW can significantly enhance seedling growth. The positive outcome and further applications of different forms, of plasma i.e., gaseous and aqueous, in the agro-food industry is further supported by this research.peer-reviewe
- …