3,894 research outputs found

    Convergence and density results for parabolic quasi-linear Venttsel’ problems in fractal domains

    Get PDF
    In this paper we study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a three dimensional fractal cylindrical domain Q, whose lateral boundary is a fractal surface S. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove density results for the domains of energy functionals defined on Q and S. Then we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals

    On the determination of Jupiter's satellite-dependent Love numbers from Juno gravity data

    Get PDF
    The Juno gravity experiment, among the nine instruments onboard the spacecraft, is aimed at studying the interior structure of Jupiter to gain insight into its formation. Doppler data collected during the first two gravity-dedicated orbits completed by Juno around the gas giant have already provided a measurement of Jupiter's gravity field with outstanding accuracy, answering crucial questions about its interior composition. The large dataset that will be collected throughout the remaining phases of the mission until the end in July 2021 might allow to determine Jupiter's response to the satellite-dependent tidal perturbation raised by its moons, and even to separate the static and dynamic effects. We report on numerical simulations performed over the full science mission to assess the sensitivity of Juno gravity measurements to satellite-dependent tides on Jupiter. We assumed a realistic simulation scenario that is coherent with the result of data analysis from the first gravity passes. Furthermore, we implemented a satellite-dependent tidal model within the dynamical model used to fit the simulated Doppler data. The formal uncertainties resulting from the covariance analysis show that Juno is indeed sensitive to satellite-dependent tides on Jupiter raised by the inner Galilean satellites (the static Love numbers of degree and order 2 of Io, Europa and Ganymede can be determined respectively to 0.28%, 4.6% and 5.3% at 1 sigma). This unprecedented determination, that will be carried out towards the end of the mission, could further constrain the interior structure of the planet, allowing to discern among interior models and improving existing theories of planetary tidal response

    The ALTCRISS project on board the International Space Station

    Full text link
    The Altcriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is to perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above 60 MeV/n. Several passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO in the Life and Physical Science of 2004 and data taking began in December 2005. Dosimeters and data cards are rotated every six months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end of expedition 12 and 13.Comment: Accepted for publication on Advances in Space Research http://dx.doi.org/10.1016/j.asr.2007.04.03

    TLD Efficiency calculation for heavy ions: a new approach

    Get PDF

    conventional orthogonal cutting machining on unidirectional fibre reinforced plastics

    Get PDF
    Abstract The results of orthogonal cutting tests on unidirectional carbon and glass fibre reinforced plastics are presented. The specimens were under shape of rectangular plates, circular disks and cylinders with different fibre architectures and a milling machine, a lathe machine and a five-axis high-speed vertical machining centre, were used for the experimental tests. The cutting speed was varied. During the tests, performed at low cutting speed, avoiding thermal effects, and high speed, to investigate about the effect of the cutting velocity on the cut quality, the fibre orientation respect to the cutting direction, the tool rake angle and the depth of cut were varied to investigate their influence on the phenomenon. A high speed steel tool in different geometries, was used. The mechanisms of chip formation and the cutting quality were investigated. A tentative to correlate the mechanisms of chip formation and cutting forces signals was done. Since the anisotropy, the mechanisms of chip formation consists of different failure modes occurring simultaneously and their identification, on the basis of the cutting force evolution, is very complex. Only in particular conditions, the features of cutting forces allow a precise identification of the chip development and detachment. The results indicated that the fibre orientation respect to the cutting direction determines the mechanisms of chip formation and influences the cutting quality. It was noted that for fibre orientation higher than 60°, the quality of the surface was revealed unacceptable. These conclusions were obtained independently of the particular shape of specimen tested and of the speed adopted

    Thyroid ultrasonography reporting: consensus of Italian Thyroid Association (AIT), Italian Society of Endocrinology (SIE), Italian Society of Ultrasonography in Medicine and Biology (SIUMB) and Ultrasound Chapter of Italian Society of Medical Radiology (SIRM)

    Get PDF
    Thyroid ultrasonography (US) is the gold standard for thyroid imaging and its widespread use is due to an optimal spatial resolution for superficial anatomic structures, a low cost and the lack of health risks. Thyroid US is a pivotal tool for the diagnosis and follow-up of autoimmune thyroid diseases, for assessing nodule size and echostructure and defining the risk of malignancy in thyroid nodules. The main limitation of US is the poor reproducibility, due to the variable experience of the operators and the different performance and settings of the equipments. Aim of this consensus statement is to standardize the report of thyroid US through the definition of common minimum requirements and a correct terminology. US patterns of autoimmune thyroid diseases are defined. US signs of malignancy in thyroid nodules are classified and scored in each nodule. We also propose a simplified nodule risk stratification, based on the predictive value of each US sign, classified and scored according to the strength of association with malignancy, but also to the estimated reproducibility among different operators

    Reduced expression of THRβ in papillary thyroid carcinomas: relationship with BRAF mutation, aggressiveness and miR expression

    Get PDF
    Purpose Down-regulation of thyroid hormone receptor beta (THRβ) gene has been described in several human malignancies, including thyroid cancer. In this study, we analyzed THRβ mRNA expression in surgical specimens from a series of human papillary thyroid carcinomas (PTCs), characterized by their genotypic and clinical–biological features. Methods Thirty-six PTCs were divided into two groups according to the 2009 American Thyroid Association risk classification (17 low, 19 intermediate), and each group was divided into subgroups based on the presence or absence of the BRAFV600E mutation (21 BRAF mutated, 15 BRAF wild type). Gene expression was analyzed using fluidic cards containing probes and primers specific for the THRβ gene, as well as for genes of thyroperoxidase (TPO), sodium/iodide symporter (NIS), thyroglobulin (Tg) and thyroid stimulating hormone receptor (TSH-R) and for some miRNAs involved in thyroid neoplasia and targeting THRβ. The mRNA levels of each tumor tissue were compared with their correspondent normal counterpart. Results THRβ transcript was down-regulated in all PTCs examined. No significant differences were found between intermediate- vs low-risk PTCs patients, and BRAF-mutated vs BRAF wild-type groups. THRβ expression was directly correlated with NIS, TPO, Tg and TSH-R, and inversely correlated to miR-21, -146a, -181a and -221 expression. Conclusions Our results demonstrate that down-regulation of THRβ is a common feature of PTCs. While it is not associated with a more aggressive phenotype of PTC, it correlates with the reduction of all the markers of differentiation and is associated with overexpression of some miRNAs supposed to play a role in thyroid tumorigenesis

    Arctic Dialogue between Russia and Finland : new old issues in the cooperation agenda

    Get PDF
    Information about the portal GoArctic.ru Registered by the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) under the number Эл â„– ФС 77-81091 dated 06/08/2021. Editor-in-chief: Shimberg Alexander Valentinovich E-mail: [email protected] Editor: Tatyana Nikolaevna Shabaeva E-mail : [email protected] General Director of the PORA Expert Center: Alexander Ivanovich Stotsk

    SPADA: A project to study the effectiveness of shielding materials in space

    Get PDF
    The SPADA (SPAce Dosimetry for Astronauts) project is a part of an extensive teamwork that aims to optimize shielding solutions against space radiation. Shielding is indeed an irreplaceable tool to reduce exposure of crews of future Moon and Mars missions. We concentrated our studies on two flexible materials, Kevlar R� and Nextel R,� because of their ability to protect human space infrastructures from micrometeoroids. We measured radiation hardness of these shielding materials and compared to polyethylene, generally acknowledged as the most effective space radiation shield with practical applications in spacecraft. Both flight test (on the International Space Station and on the Russian FOTON M3 rocket), with passive dosimeters and accelerator-based experiments have been performed. Accelerator tests using high-energy Fe ions have demonstrated that Kevlar is almost as effective as polyethylene in shielding heavy ions, while Nextel is a poor shield against high-charge and -energy particles. Preliminary results from spaceflight, however, show that for the radiation environment in low-Earth orbit, dominated by trapped protons, thin shields of Kevlar and Nextel provide limited reduction
    • …
    corecore