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Abstract. In this paper we study a quasi-linear evolution equation with non-

linear dynamical boundary conditions in a three dimensional fractal cylindrical
domain Q, whose lateral boundary is a fractal surface S. We consider suitable

approximating pre-fractal problems in the corresponding pre-fractal varying

domains. After proving existence and uniqueness results via standard semi-
group approach, we prove density results for the domains of energy functionals

defined on Q and S. Then we prove that the pre-fractal solutions converge in a

suitable sense to the limit fractal one via the Mosco convergence of the energy
functionals.

1. Introduction. Recently there has been a growing interest in the study of par-
ticular boundary value problems, taking place in irregular (e.g. fractal) domains.
This is due to the fact that many industrial processes and natural phenomena occur
across irregular media, and fractal geometries are a useful tool in order to model
these geometries (see [43], [44]).

Evolution problems with dynamical boundary conditions on domains with fractal
boundaries are known in literature as Venttsel’ problems (see [47] and [2]). This
kind of boundary conditions is of great interest in applications, since they arise in
problems such phase-transition phenomena, fluid diffusion, climatology and non-
linear cooling effects on the boundary (see for example [15, 16, 19, 42] and the
references listed in). There is a huge literature on linear and nonlinear Venttsel’
problems, see [14], [28], [27], [35, 30, 31, 34, 32, 33] (see also [10], [11] and [12] for
the numerical approximation). The goal of this paper is to adapt the framework
of [26] in order to extend the convergence results in [14] for a quasilinear Venttsel’
problem to the three dimensional case. In the two dimensional case, one considers
a fractal nonlinear energy functional and its natural approximating pre-fractal en-
ergy functionals. By using the notion of Mosco convergence (see [39, 40]) of energy
functionals adapted by Tölle to the nonlinear framework in varying Hilbert spaces
(see [45]), the authors are able to prove the convergence of the pre-fractal solutions
to the limit fractal one. The problem when passing to the three dimensional case
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is twofold. First, since we consider the case of the p-Laplace operator for p ≥ 2, in
two dimensions from Sobolev embedding theorem we have the immersion of W 1,p

in the space of continuous functions; in dimension three, this does not hold any-
more. Secondly, in two dimensions a complete characterization of the energy space
on the fractal curve in terms of Lipschitz spaces holds; in particular, these spaces
are subsets of the set of Hölder continuous functions on the fractal (see [18], [36]
and [9]). In the three dimensional case, to our knowledge, this characterization does
not hold anymore. Therefore functions in the domain of the energy functional have
to be approximated in an appropriate way by smoother functions. We then prove
density results which will turn crucial in order to prove the M-convergence of the
energy functionals.

More precisely, we consider a cylindrical fractal surface S = F×I, where F is the
Koch snowflake and I = [0, 1], and for every h ∈ N its natural pre-fractal approxi-
mation Sh = Fh× I. We denote by Q the three-dimensional open bounded cylinder
having as lateral boundary S and, for every h ∈ N, by Qh the approximating pre-
fractal domains which are an increasing sequence exhausting Q. We introduce the

energy functionals Φp and Φ
(h)
p on the fractal and pre-fractal sets respectively, and

we denote by V (Q,S) the domain of the fractal energy form. These functionals are
proper, convex and weakly lower semicontinuous. We preliminary prove that we
can approximate functions in V (Q,S) with functions in V (Q,S)∩C(Q) (see Theo-
rem 6.4). The key result is the M-convergence of the pre-fractal energy functionals

Φ
(h)
p to the fractal energy functional Φp. This is equivalent to the G-convergence

of the subdifferrentials of pre-fractal functionals (which we denote by Ah) to the
subdifferential of the fractal functional (denoted by A); moreover, also the nonlinear
semigroups generated by −Ah converge to the nonlinear semigroup associated to
−A.

We consider then the following two abstract Cauchy problems, for T > 0 fixed:

(Ph)

{
duh
dt +Ahuh 3 0, t ∈ [0, T ]

uh(0) = u
(h)
0 ,

(P )

{
du
dt +Au 3 0, t ∈ [0, T ]
u(0) = u0,

and we give existence and uniqueness results for such problems. We give a charac-
terization of A and Ah in order to prove that the solutions of problems (Ph) and
(P ) solve in a suitable sense a homogeneous parabolic equation for the p-Laplace

operator with nonlinear Venttsel’ boundary conditions (see problems (P̃h) and (P̃ )
below). We point out that the existence and uniqueness of strong solutions for

problems (P̃h) and (P̃ ) can be proved also for the nonhomogeneous problems (see
Theorem 2.7 in [28] for the fractal case in two dimensions), but in this case the
asymptotic behavior of the solutions is still an open problem. In the homogeneous
case, we are able to prove that the solutions of the pre-fractal problems converge to
the limit fractal one.

The plan of the paper is the following. In Section 2 we introduce some notions on
fractal sets. In Section 3 we present some properties of Sobolev spaces and Besov
spaces. In Section 4 we give the definition of varying Hilbert spaces. In Section 5
we introduce the energy functionals in both the pre-fractal and the fractal case. In
Section 6 we prove some density results. In Section 7 we prove the M-convergence
of the functionals. In Section 8 we introduce the nonlinear Venttsel’ boundary value
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problems in the pre-fractal and fractal case, we give existence and uniqueness results
and we prove the convergence of the pre-fractal solutions to the fractal solution.

2. The fractal and pre-fractal sets. In this paper we denote by |P − P0| the
Euclidean distance in Rn and by B(P0, r) = {P ∈ Rn : |P −P0| < r}, P0 ∈ Rn, r >
0, the euclidean ball.

By the Koch snowflake F , we denote the union of three com-planar Koch curves
K1, K2 and K3 (see [17]). We assume that the junction points A1, A3 and A5 are
the vertices of a regular triangle with unit side length, i.e. |A1−A3| = |A1−A5| =
|A3 − A5| = 1. K1 is the uniquely determined self-similar set with respect to a

family Ψ1 of four suitable contractions ψ
(1)
1 , ..., ψ

(1)
4 , with respect to the same ratio

1
3 (see [18]). Let V

(1)
0 := {A1, A3}, ψi1...ih := ψi1 ◦ · · · ◦ ψih , V

(1)
i1...ih

:= ψ
(1)
i1...ih

(V
(1)
0 )

and

V
(1)
h :=

4⋃
i1...ih=1

V
(1)
i1...ih

.

We set i|h = (i1, i2, . . . , ih), V
(1)
? := ∪h≥0V

(1)
h . It holds that K1 = V

(1)
? . Now let

K0 denote the unit segment whose endpoints are A1 and A3. We set Ki1...ih =
ψi1...ih(K0) and V (Ki1...ih) = Vi1...ih .

In a similar way, it is possible to approximate K2,K3 by the sequences (V
(2)
h )h≥0,

(V
(3)
h )h≥0, and denote their limits by V

(2)
? , V

(3)
? .

In order to approximate F , we define the increasing sequence of finite sets of

points Vh := ∪3
i=1V

(i)
h , h ≥ 1 and V? := ∪h≥1Vh. It holds that V? = ∪3

i=1V
(i)
? and

F = V?.

Figure 1. The pre-fractal curve Fh for h = 3.

The Hausdorff dimension of the Koch snowflake is given by Df = ln 4
ln 3 .

One can define, in a natural way, a finite Borel measure µ supported on F by

µF := µ1 + µ2 + µ3, (2.1)

where µi denotes the normalized Df -dimensional Hausdorff measure, restricted to
Ki, i = 1, 2, 3.
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Figure 2. The fractal domain Q.

In the following we denote by

Fh+1 =

3⋃
i=1

K
(h+1)
i (2.2)

the closed polygonal curve approximating F at the (h+ 1)-th step.
We define Sh = Fh×I, where I = [0, 1]. By Ωh ⊂ R2 we denote the open bounded

set having as boundary Fh. We denote by Qh the three-dimensional cylindrical
domain having Sh as “lateral surface” and the sets Ωh×{0} and Ωh×{1} as bases.

In an analogous way, we define the cylindrical-type surface S = F × I and we
denote by Ω the open bounded two-dimensional domain with boundary F . As
above, by Q we denote the open cylindrical domain having S as lateral surface and
the sets Ω× {0} and Ω× {1} as bases (see Figure 2).

We denote the points of S and Sh by the couple P = (x, y), where x = (x1, x2)
are the coordinates of the orthogonal projection of P on the plain containing F and
Fh respectively (for S and Sh) and y is the coordinate of the orthogonal projection
of P on the interval [0, 1], that is (x1, x2) ∈ F (or (x1, x2) ∈ Fh for the pre-fractal
case) and y ∈ I.

We introduce on S the measure

dg = dµF × dL1, (2.3)

where dL1 is the one-dimensional Lebesgue measure on I.
By R we denote the open equilateral triangle whose midpoints are the vertices

A1, A3, A5, and by T the open prism R× [0, 1] with bases R× {0} and R× {1}.

3. Functional spaces. By Lp(·) we denote the Lebesgue space with respect to the
Lebesgue measure dL3 on subsets of R3, which will be left to the context whenever
that does not create ambiguity. Let T be a closed set of R3, by C(T ) we denote the
space of continuous functions on T and C0,β(T ) is the space of Hölder continuous
functions on T , 0 < β < 1. Let G be an open set of R3, by W s,p(G), where s ∈ R+,
we denote the (possibly fractional) Sobolev spaces (see [41]). D(G) is the space of
infinitely differentiable functions with compact support on G.

By ` we denote the arc-length coordinate on each edge Fh and we introduce the

coordinates x1 = x1(`), x2 = x2(`), y = y on every affine face S
(j)
h of Sh. By d` we
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denote the one-dimensional measure given by the arc-length ` and by

dσ = d`× dL1

we denote the measure on S
(j)
h .

In the following, we will make use of trace spaces on polygonal and polyhedral
boundaries. By W 1,p(Fh) we denote (see [7]) the set

{u ∈ C(Fh) : u| ◦
M
∈W 1,p(

◦
M)}.

In the sequel, we consider W 1,p(Fh) with the norm

‖u‖W 1,p(Fh) =
(
‖u‖pLp(Fh) + ‖Du‖pLp(Fh)

) 1
p

.

By W r,p(Fh), 0 < r ≤ 1 we denote the Sobolev space on Fh, defined by local
Lipschitz charts as in [41].

We denote by W 1,p(Sh) the Sobolev space (on the polyhedral domain Sh) of
functions for which the norm

‖u‖pW 1,p(Sh) =

∫
I

(
‖u‖pLp(Fh) + ‖Du‖pLp(Fh) + ‖Dyu‖pLp(Fh)

)
dL1

is finite [41].
We now introduce the notions of d-set and trace.

Definition 3.1. A closed set M is a d-set in R3 (0 < d ≤ 3) if there exist a Borel
measure µ with suppµ = M and two positive constants c1 and c2 such that

c1r
d ≤ µ(B(P, r)

⋂
M) ≤ c2rd ∀P ∈M .

We point out that, from Definition 3.1, it follows that F is a Df -set, the measure
µF is a Df -measure, S is a (Df + 1)-set and the measure g defined in (2.3) is a
(Df + 1)-measure.

Definition 3.2. For f ∈W 1,s(G) we define

γ0f(P ) = lim
r→0

1

|B(P, r)
⋂
G|

∫
B(P,r)

⋂
G

f(P)dL3,

at every point P ∈ G where the limit exists.

It is known that the limit exists at quasi every P ∈ G with respect to the (s, p)-
capacity (see [1]).

Proposition 3.3. Let Qh and Sh be as above. Let 1
p < s < 1+ 1

p . Then W s− 1
p ,p(Sh)

is the trace space to Sh of W s,p(Qh) in the following sense:

1. γ0 is a continuous and linear operator from W s,p(Qh) to W s− 1
p ,p(Sh);

2. there exists a continuous linear operator Ext from W s− 1
p ,p(Sh) to W s,p(Qh)

such that γ0 ◦ Ext is the identity operator in W s− 1
p ,p(Sh).

From now on, we set β = 1 − 2−Df
p . We now define the Besov space on S only

for this particular β, which is the case of our interest. For a general treatment see
[22].

Definition 3.4. We say that f ∈ Bp,pβ (S) if f ∈ Lp(S, g) and it holds

‖f‖Bp,pβ (S) < +∞,
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where

‖f‖Bp,pβ (S) = ‖f‖Lp(S,g) +

(∫ ∫
|P−P ′|<1

|f(P )− f(P ′)|p

|P − P ′|2Df+p−1
dg(P )dg(P ′)

) 1
p

(3.1)

We now recall a trace theorem.

Theorem 3.5. Let Γ denote S, Ω×{0} and Ω×{1}. Bp,pα (Γ) is the trace space of
W 1,p(Q) that is:

1. There exists a linear and continuous operator γ0 : W 1,p(Q)→ Bp,pα (Γ).
2. There exists a linear and continuous operator Ext : Bp,pα (Γ)→W 1,p(Q), such

that γ0 ◦ Ext is the identity operator on Bp,pα (Γ), that is

γ0 ◦ Ext = IdBp,pα (Γ)

For the proof we refer to Theorem 1 of Chapter VII in [22], see also [46]. In the

case Γ = S, then the smoothness index α is equal to 1 − 2−Df
p . If Γ = Ω × {0}

or Γ = Ω × {1}, then α = 1 − 1
p ; we point out that in this case the Besov space

Bp,p
1− 1

p

(Γ) coincides with the fractional Sobolev space W 1− 1
p ,p(Γ).

In the following we denote by u|S and u|Sh the trace of u on S and Sh respectively.
Sometimes we will omit the trace subscript and the interpretation will be left to the
context.

The following theorem characterizes the trace on Sh of a function in W β,p(R3)
(see [1] for a general treatment of Sobolev spaces).

Theorem 3.6. Let u ∈W β̃,p(R3) and δh = ( 3
4 )h = (31−Df )h. Then, for 1

p < β̃ ≤ 3
p ,

‖u‖pLp(Sh) ≤
Cβ̃
δh
‖u‖p

W β̃,p(R3)
, (3.2)

where Cβ̃ is independent of h.

Proof. We point out that every u ∈ W β̃,p(R3) can be expressed in the following
way:

u = Gβ̃ ∗ g, g ∈ Lp(R3),

where Gβ̃ is the Bessel kernel of order β̃ (see [22]). Then by Hölder inequality we
have

‖u‖pLp(Sh) =

∫
Sh

|u|p dσ =

∫
Sh

∣∣∣∣∫
R3

Gβ̃(x− y)g(y) dy

∣∣∣∣p dσ ≤∫
Sh

(∫
R3

|Gβ̃(x− y)|ap |g(y)|p dy

)(∫
R3

|Gβ̃(x− y)|(1−a)p′ dy

) p
p′

dσ,

where 0 < a < 1 will be chosen later. Now, by using Lemma 1 on page 104 in [22],
we get ∫

R3

|Gβ̃(x− y)|(1−a)p′ dy ≤ C1,

with C1 independent of h, if

(3− β̃)(1− a)p′ < 3. (3.3)

Moreover, since Sh is a 2-set with constant c2 = C3 δ
−1
h (see Definition 3.1), again

from Lemma 1 on page 104 in [22] we get
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Sh

|Gβ̃(x− y)|ap dσ ≤ C4 δ
−1
h ,

with C4 again independent of h, if

(3− β̃)ap < 2. (3.4)

Hence, by choosing a in order to satisfy (3.3) and (3.4), by using Fubini’s Theorem
we get

‖u‖pLp(Sh) ≤ C1

∫
Sh

(∫
R3

|Gβ̃(x− y)|ap |g(y)|p dy

)
dσ =

C1

∫
R3

(∫
Sh

|G(x− y)|ap dσ

)
|g(y)|p dy ≤ C1 C4 δ

−1
h ‖g‖

p
Lp(R3) =

Cβ̃ δ
−1
h ‖u‖

p

W β̃,p(R3)
,

where Cβ̃ is a constant independent of h.

The following theorem is a consequence of Theorem 1 in Chapter V of [22].

Theorem 3.7. Let u ∈W β̃,p(R3). Then, for
2−Df
p < β̃,

‖u‖pLp(S) ≤ C
∗
β̃
‖u‖p

W β̃,p(R3)
. (3.5)

It is possible to prove that the domains Qh are (ε, δ) domains with parameters ε
and δ independent of the (increasing) number of sides of Sh. Thus by the extension
theorem for (ε, δ) domains due to Jones (Theorem 1 in [20]) we obtain the following
Theorem 3.8, which provides an extension operator from W 1,p(Qh) to the space
W 1,p(R3) whose norm is independent of h.

Theorem 3.8. There exists a bounded linear extension operator ExtJ : W 1,p(Qh)
→ W 1,p(R3), such that

‖ExtJ v‖pW 1,p(R3) ≤ CJ‖v‖
p
W 1,p(Qh) (3.6)

with CJ independent of h.

Theorem 3.9. There exists a linear extension operator Ext such that, for any

β̃ > 0 Ext : W β̃,p(Q)→ W β̃,p(R3),

‖Ext v‖p
W β̃,p(R3)

≤ C̄β̃‖v‖
p

W β̃,p(Q)
(3.7)

with C̄β̃ depending on β̃.

4. Convergence of Hilbert spaces. We introduce the notion of convergent
Hilbert spaces that we will use in the next sections. For further details and proofs
of the theorems see [24] and [23].

The Hilbert spaces we consider are real and separable.

Definition 4.1. A sequence of Hilbert spaces {Hh}h∈N converges to a Hilbert
space H if there exists a dense subspace C ⊂ H and a sequence {Zh}h∈N of linear
operators Zh : C ⊂ H → Hh such that

lim
h→∞

‖Zhu‖Hh = ‖u‖H for any u ∈ C.

We define the space H = {∪hHh} ∪H and define strong and weak convergence
in H. From now on we assume {Hh}h∈N , H and {Zh}h∈N are as in Definition 4.1.
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Definition 4.2 (Strong convergence in H). A sequence of vectors {uh}h∈N strongly
converges to u in H if uh ∈ Hh, u ∈ H and there exists a sequence {ũm}m∈N ∈ C
tending to u in H such that

lim
m→∞

lim
h→∞

‖Zhũm − uh‖Hh = 0

Definition 4.3 (Weak convergence in H). A sequence of vectors {uh}h∈N weakly
converges to u in H if uh ∈ Hh, u ∈ H and

(uh, vh)Hh → (u, v)H

for every sequence {vh}h∈N strongly tending to v in H.

Remark 1. We note that the strong convergence implies the weak convergence
(see [24]).

Lemma 4.4. Let {uh}h∈N be a sequence weakly converging to u in H. Then

sup
h→∞

‖uh‖Hh <∞, ‖u‖H ≤ lim
h→∞

‖uh‖Hh .

Moreover, uh → u strongly if and only if ‖u‖H = lim
h→∞

‖uh‖Hh .

Let us recall some characterizations of the strong convergence of a sequence of
vectors {uh}h∈N in H.

Lemma 4.5. Let u ∈ H and let {uh}h∈N be a sequence of vector uh ∈ Hh. Then
{uh}h∈N strongly converges to u in H if and only if

(uh, vh)Hh → (u, v)H

for every sequence {vh}h∈N with vh ∈ Hh weakly converging to a vector v in H.

Lemma 4.6. A sequence of vectors {uh}h∈N with uh ∈ Hh strongly converges to a
vector u in H if and only if

‖uh‖Hh → ‖u‖H and

(uh, Zh(ϕ))Hh → (u, ϕ)H for every ϕ ∈ C.

Lemma 4.7. Let {uh}h∈N be a sequence with uh ∈ Hh. If ‖uh‖Hh is uniformly
bounded, then there exists a subsequence of {uh}h∈N which weakly converges in H.

Lemma 4.8. For every u ∈ H there exists a sequence {uh}h∈N, uh ∈ Hh strongly
converging to u in H.

We now define the G-convergence of operators (see Definition 7.20 in [45]).

Definition 4.9. Let n ∈ N, An : Hn → 2Hn , A : H → 2H be multivalued operators.

We say that An G-converges to A, An
G−→ A, if for every [x, y] ∈ A (i.e. x ∈ D(A)

and y ∈ A(x)) there exists [xn, yn] ∈ An, n ∈ N such that xn → x and yn → y
strongly in H.

In the following we denote by L2(Q,m) the Lesbegue space with respect to the
measure m with

dm = dL3 + dg, (4.1)

where g is the measure defined in (2.3), and by the space L2(Q,mh) the Lebesgue
space with respect to the measure mh with

dmh = χQhdL3 + χShδhdσ, (4.2)

where χQh and χSh denote the characteristic function of Qh and Sh respectively.
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Throughout the paper we consider H = L2(Q,m) where m is the measure in
(4.1), and the sequence {Hh}h∈N with Hh = {L2(Q)∩L2(Q,mh)} where mh is the
measure in (4.2) with norms

‖u‖2H = ‖u‖2L2(Q) + ‖u|S‖2L2(S,g), ‖u‖
2
Hh

= ‖u‖2L2(Qh) + ‖u|Sh‖2L2(Sh,δhσ).

Proposition 4.10. Let δh =
(

3
4

)h
. Then the sequence {Hh}h∈N converges in the

sense of Definition 4.1 to H.

For the proof, see Proposition 4.1 in [35], where C and Zh in Definition 4.1 are
respectively C(Q) and the identity operator on C(Q).

5. Energy functionals. From now on, let p > 2 (for the case p = 2, we refer to
[26] and [27]). By proceeding as in [8], we construct a p-energy form on F (which
has the role of Euclidean p-Lagrangian dL(u, v) = |∇u|p−2∇u∇v dL3) by defining
a p-Lagrangian measure LpF on F . The corresponding p-energy form on F is given
by

EF (u, v) =

∫
F

dLpF (u, v)

with domain D(F ) = {u ∈ Lp(F, µF ) : EF [u] < +∞} dense in Lp(F, µF ).

Proposition 5.1. D(F ) is a Banach space equipped with the following norm

‖u‖D(F ) = (‖u‖pLp(F ) + EF [u])
1
p . (5.1)

As in [9] the following result can be proved.

Proposition 5.2. For p > 1, D(F ) is embedded in C0,η(F ), with

η =

(
1− 1

p

)
ln 4

ln 3
.

Remark 2. We point out that, for p > ln 4
ln 4−ln 3 , the Hölder exponent η in Proposi-

tion 5.2 is greater than one. In this case, for the Koch snowflake F , from Corollary
4.2 in [9], the space C0,η(F ) does not degenerate to the space of constant functions.

We now define the energy form on S:

ES [u] =
1

p

∫
I

EF [u]dL1 +
1

p

∫
F

∫
I

|Dyu|pdL1dµF (5.2)

with domain D(S) defined as

D(S) = C(S) ∩ Lp([0, 1];D(F )) ∩W 1,p([0, 1];Lp(F ))
‖·‖D(S)

, (5.3)

where ‖ · ‖D(S) is the intrinsic norm

‖u‖D(S) = (ES [u] + ‖u‖pLp(S,g))
1
p . (5.4)

We now give an embedding result for the domain D(S). Unlike the two dimensional
case where there is a characterization of the functions in D(F ) in terms of the
so-called Lipschitz spaces (see Theorem 4.1 in [9]), for D(S) we do not have such
characterization, but the following result holds.

Proposition 5.3. D(S) is continuously embedded in Bp,p
β̄

(S), for any 0 < β̄ < 1.

Proof. We follow the proof in [25], adapted to our case.
We recall that
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D(S) := C(S)
⋂
Lp([0, 1];D(F ))

⋂
W 1,p([0, 1];Lp(F ))

‖·‖D(S)
.

Following [37], we define Bp,pDf−ε,1(S) := Lp([0, 1];Bp,pDf−ε(F ))
⋂
W 1,p([0, 1];Lp(F ))

for ε > 0.
From Theorem 4.1 in [9] and Proposition 3, Chapter V in [22], it holds that

D(F ) = Bp,∞Df (F ). Moreover, this last space is continuously embedded in Bp,pDf−ε(F )

for ε > 0 (see Proposition 5, Chapter VIII in [22]). Hence, from the definition of
D(S), we deduce that D(S) ⊂ Bp,pDf−ε,1(S). Moreover, the embedding is continuous,

i.e. there exists a positive constant C such that

‖u‖Bp,pDf−ε,1(S) ≤ C‖u‖D(S). (5.5)

From the definition of Bp,pDf−ε,1(S)-norm we get

‖u‖p
Bp,pDf−ε,1

(S)
=

∫ 1

0

(
‖u‖p

Bp,pDf−ε
(F )

+ ‖u‖pLp(F ) + ‖Dyu‖pLp(F )

)
dL1 ≤

C

∫ 1

0

(
‖u‖p

Bp,∞Df
(F )

+ ‖u‖pLp(F ) + ‖Dyu‖pLp(F )

)
dL1 ≤

C

∫ 1

0

(
‖u‖pD(F ) + ‖u‖pLp(F ) + ‖Dyu‖pLp(F )

)
dL1.

From the definition of ES and of the norm in D(F ), we get

‖u‖Bp,pDf−ε,1(S) ≤ C(ES [u] + ‖u‖pLp(S)) = C‖u‖pD(S),

i.e. the thesis.
For any Banach space X and for any 0 < β̄ < 1

W 1,p([0, 1];X) ⊂W β̄,p([0, 1];X).

Moreover if β̄ is not integer, it holds

W β̄,p([0, 1];X) ≡ Bp,p
β̄

([0, 1];X).

Hence if 0 < β̄ < 1

Bp,pDf−ε,1(S) ⊂ Lp([0, 1];Bp,pDf−ε(F ))
⋂
Bp,p
β̄

(0, 1;Lp(F )) ⊂

Lp([0, 1];Bp,p
β̄

(F ))
⋂
Bp,p
β̄

([0, 1];Lp(F )) = Bp,p
β̄

(S),

where the last equivalence can be proved following [37]. We now prove that there
exists a positive constant C such for every 0 < β̄ < 1

‖u‖Bp,p
β̄

(S) ≤ C‖u‖D(S). (5.6)

Indeed, from the above remarks, we get

‖u‖p
Bp,p
β̄

(S)
≤ C

(∫ 1

0

‖u‖p
Bp,pDf−ε

(F )
dL1 + ‖u‖p

Bp,p
β̄

([0,1];Lp(F ))

)
=

C(‖u‖p
Lp([0,1];Bp,pDf−ε

(F ))
+ ‖u‖p

W β̄,p([0,1];Lp(F ))
) ≤

C(‖u‖p
Lp([0,1];Bp,pDf−ε

(F ))
+ ‖u‖pW 1,p([0,1];Lp(F ))) = C‖u‖p

Bp,pDf−ε,1
(S)

.

From (5.5) we get (5.6). Hence the theorem is proved.



CONVERGENCE AND DENSITY RESULTS 75

Now we introduce the energy functional on Q. Let us consider the space

V (Q,S) =
{
u ∈W 1,p(Q) : u|S ∈ D(S), u|Ω̃ = 0

}
, (5.7)

where Ω̃ := (Ω× {0}) ∪ (Ω× {1}).
Let b be a continuous and strictly positive function on Q. We consider the energy

functional Φp defined as follows:

Φp[u] :=

 1
p

∫
Q

|Du|p dL3 + ES [u|S ] + 1
p

∫
S

b|u|p dg if u ∈ V (Q,S),

+∞ if u ∈ H \ V (Q,S).
(5.8)

From now on we denote by Lp(Q,m) the Lebesgue space with respect to the measure
defined in (4.1).

Proposition 5.4. Φp is a weakly lower semicontinuous, proper and convex func-
tional in H.

For the proof see Proposition 2.3 in [28].
We now set

E(h)
p [u] =

δ1−p
h

p

∫
I

(∫
Fh

|Du|pd`
)

dL1 +
δh
p

∫
Fh

(∫
I

|Dyu|pdL1

)
d`, (5.9)

with domain

D(E(h)
p ) = W 1,p(Sh).

We introduce the energy functional on the pre-fractal domain:

Φ(h)
p [u] :=

 1
p

∫
Q

χQh |Du|pdL3 + δh
p

∫
Sh

b|u|p dσ + E(h)
p [u] if u ∈ V (Q,Sh),

+∞ if u ∈ Hh \ V (Q,Sh),

(5.10)
with

V (Q,Sh) :=
{
u ∈W 1,p(Q) : u|

Sh
∈ D(E(h)

p ), u|Ω̃h = 0
}
,

where we define Ω̃h := (Ωh × {0}) ∪ (Ωh × {1}).
By proceeding as in Proposition 2.3 in [28], we can prove the following result.

Proposition 5.5. Φ
(h)
p is a weakly lower semicontinuous, proper and convex func-

tional in Hh.

6. Density theorems. In the notations of [37, page 8], we introduce the following
space:

W (0, 1) := Lp([0, 1];D(F ))
⋂
W 1,p([0, 1];Lp(F )). (6.1)

This is a Banach space equipped with the norm

‖u‖W (0,1) = (‖u‖pLp([0,1];D(F )) + ‖Dyu‖pLp([0,1];Lp(F )))
1
p . (6.2)

The following results hold.

Proposition 6.1. The space D([0, 1];D(F )) is densely embedded in W (0, 1), that
is

D([0, 1];D(F ))
‖·‖W (0,1)

= W (0, 1) (6.3)
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Proof. One can easily adapt the proof of Theorem 2.1 page 11 in [37] to the case of
Banach spaces, by replacing all the L2 spaces with the corresponding Lp spaces.

Proposition 6.2. D([0, 1];D(F )) ⊂ C(S).

Proof. See Proposition 5.2 in [26].

Theorem 6.3. The space D([0, 1];D(F )) is dense in D(S) with respect to the in-
trinsic norm ‖ · ‖D(S).

Proof. One can adapt the proof of Theorem 5.3 in [26] with small suitable changes.

We now state the main Theorem of the section.

Theorem 6.4. Let Q, S and V (Q,S) be defined as in Section 2 and Section 5
respectively. For every u ∈ V (Q,S), there exists ψn ∈ V (Q,S)

⋂
C(Q) such that:

(1) ‖ψn − u‖W 1,p(Q) → 0, for n→∞;
(2) ‖ψn − u‖Lp(Q,m) → 0, for n→∞;

(3) ES [ψn − u] → 0, for n→∞.

In order to prove this Theorem, we need a preliminary proposition on trace and
extension operators.

Proposition 6.5. Let β be as in Section 3. Let γ0 and Ext be the trace and the
extension operator defined in Theorem 3.5 respectively. Then

(1) If u ∈ C(R3)
⋂
W 1,p(R3) then γ0u ∈ C(S)

⋂
Bp,pβ (S).

(2) If u ∈ C(S)
⋂
Bp,pβ (S) then Ext(u) ∈ C(R3)

⋂
W 1,p(R3).

Proof. One can adapt the proof of Proposition 5.5 in [26] with the obvious changes
when considering the case p ≥ 2 instead of p = 2.

We are now ready to prove Theorem 6.4.

Proof. We follow the spirit of the proof of Theorem 5.4 in [26]. We start by proving
(1). Let us consider u ∈ V (Q,S), then u|S ∈ D(S). From Theorem 6.3 there exists
{ϕn} ⊂ D(0, 1;D(F )) such that

‖ϕn − u|S‖D(S) → 0 when n→∞.

We now set

ũ =

{
u|S on S,

0 on ∂Q \ S,

where ∂Q \ S = (Ω× {0}) ∪ (Ω× {1}). We point out that u|S ∈ Bp,pα (S) for every

0 < α < 1 from Proposition 5.3. We denote by B̃p,pγ (K) the Besov space on a
closed set K ⊂ Rn as defined in [21, page 356]. Since u|S belongs to Bp,pα (S) for

every 0 < α < 1, we have that ũ belongs to B̃p,pγ (∂Q) for every γ <
Df
p + α. In

particular, there exists ε > 0 such that ũ ∈ B̃p,p1+ε(∂Q). Since ∂Q is a closed set in

R3, from Theorem 1 in [21] we have that there exists an extension operator Ext∂Q
from Bp,p1+ε(∂Q) to W 1+ε,p(R3). If we set

û := (Ext∂Qũ)|Q,

this function in particular belongs to W 1,p(Q).
Let now ϕ̂n := Ext(ϕn). Then from Proposition 6.5 (see [22])
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ϕ̂n ∈W 1,p(Q)
⋂
C(Q).

We now prove that ‖ϕ̂n − û‖W 1,p(Q) → 0. Indeed, from Theorem 3.5 and the
inclusion of D(S) in Bp,pβ (S) (see Proposition 5.3),

‖ϕ̂n − û‖W 1,p(Q) ≤ C1‖ϕn − u|S‖Bp,pβ (S) ≤ ‖ϕn − u|S‖D(S) → 0

from the density Theorem 6.3.
Now let us consider the function u− û. This function belongs to W 1,p(Q) and it

is such that (u− û)|∂Q = 0, then u− û ∈ W 1,p
0 (Q) (see Theorem 3 in [48]). There

exists {ηm}m∈N ⊂ C1
0 (Q) such that

‖ηm − (u− û)‖W 1,p(Q) → 0. (6.4)

Let {ψn,m} denote the doubly indexed sequence of function {ϕ̂n−ηm}. The sequence

{ψn,m} belongs to W 1,p(Q)
⋂
C(Q). From Corollary 1.16 in [3] we deduce that

{ψm,n} converges to u in W 1,p(Q) as n → ∞. In fact there exists an increasing
mapping n→ m(n), tending to ∞ as n→∞, such that

lim
n→∞

‖u− ψn,m(n)‖W 1,p(Q) = lim
n→∞

‖u− ϕ̂n − ηm(n)‖W 1,p(Q) ≤
lim
n→∞

(‖u− û− ηm(n)‖W 1,p(Q) + ‖ϕ̂n − û‖W 1,p(Q)).

Hence by applying Corollary 1.16 in [3] to the right hand side of the above inequality
it follows that

lim
n→∞

‖u− ψn,m(n)‖W 1,p(Q) ≤ lim
m→∞

lim
n→∞

{‖u− û− ηm‖W 1,p(Q) +‖ϕ̂n − û‖W 1,p(Q)}.

The two terms in the sum tend to zero when m,n→∞, then

lim
n→∞

‖ψn,m(n) − u‖W 1,p(Q) = 0, (6.5)

and also lim
n→∞

‖ψn,m(n) − u‖W 1,p(Q) = 0. Hence we conclude that

‖ψn,m(n) − u‖W 1,p(Q) → 0 when n→∞.

From now on we denote by ψn = ψn,m(n). We now prove (2), that is

‖ψn − u‖Lp(Q,m) = ‖ψn − u‖Lp(Q) + ‖ψn − u‖Lp(S) → 0. (6.6)

The first term in (6.6) tends to zero when n→∞ since

‖ψn − u‖Lp(Q) ≤ ‖ψn − u‖W 1,p(Q).

We now prove that also the second term in (6.6) tends to zero:

‖ψn − u‖Lp(S) = ‖ϕ̂n|S − ηn|S − u|S‖Lp(S)

≡ ‖ϕn − u|S‖Lp(S) ≤ ‖ϕn − u|S‖D(S),

and the last quantity tends to zero from the density of D(0, 1;D(F )) in D(S). This
proves that ψn → u in Lp(Q,m).

We now prove (3):

ES [(u− ψn)|S ] = ES [u|S − ψn|S ] ≡ ES [u|S − ϕn] ≤ ‖u|S − ϕn‖D(S) → 0.

Hence the theorem is proved.

We remark that we can prove a result similar to Theorem 6.4 also for the pre-
fractal case. We define the space

W (h)(0, 1) = Lp([0, 1];W 1,p(Fh)) ∩W 1,p([0, 1];Lp(Fh)).
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Similarly to Proposition 6.1, we can prove that D(0, 1;W 1,p(Fh)) is dense in W (h)(0,
1). But it turns out that

W (h)(0, 1) ≡W 1,p(Sh).

We also point out that we can prove as in Theorem 6.2 that D(0, 1;W 1,p(Fh)) ⊂
C(Sh). Hence the following result holds.

Theorem 6.6. For every u ∈ V (Q,Sh) there exists ψn ∈ V (Q,Sh) ∩ C(Q) such
that:

(1) ‖ψn − u‖W 1,p(Q) → 0 for n→∞;
(2) ‖ψn − u‖Lp(Q,mh) → 0 for n→∞;

(3) E
(h)
p [ψn − u]→ 0 for n→∞.

Proof. Let u ∈ V (Q,Sh), hence u|Sh ∈ D(E
(h)
p ) = W 1,p(Sh). From the density of

D(0, 1;W 1,p(Fh)) in W 1,p(Sh), there exists a sequence {ϕn} ⊂ D(0, 1;W 1,p(Fh))
such that

‖ϕn − u‖W 1,p(Sh) → 0 for n→∞.

Since {ϕn} ⊂ D(0, 1;W 1,p(Fh)), in particular it belongs to W 1− 1
p ,p(Sh). From

the trace Theorem 3.3 there exists an extension ϕ̂n belonging to W 1,p(Qh); then,
from Theorem 3.8, there exists an extension ϕ̃n ∈ W 1,p(R3). We point out that,
since ϕn ∈ C(Sh), as in Proposition 6.5 we can prove that the extension of ϕn is
continuous on Q. We set ψn := ϕ̃n|Q, hence ψn ∈W 1,p(Q). From Theorem 3.8 and
Theorem 3.3 we get

‖ψn − u‖W 1,p(Q) ≤ C1‖ϕ̃n − u‖W 1,p(R3) ≤ C2‖ϕ̂n − u‖W 1,p(Qh) ≤
C3‖ϕn − u‖

W
1− 1

p
,p

(Sh)
≤ C4‖ϕn − u‖W 1,p(Sh),

and the last quantity tends to 0 for n → ∞ from the density of D(0, 1;W 1,p(Fh))
in W 1,p(Sh).

As to (2), the following holds from (1) and the density of D(0, 1;W 1,p(Fh)) in
W 1,p(Sh):

‖ψn − u‖pLp(Q,mh) = ‖ψn − u‖pLp(Qh) + δh‖ϕn − u‖pLp(Sh) ≤
C1‖ψn − u‖pW 1,p(Q) + C2‖ϕn − u‖pW 1,p(Sh) → 0.

We now come to (3):

E(h)
p [ψn − u] ≤ C‖ϕn − u‖pW 1,p(Sh) → 0.

Hence the thesis follows.

Remark 3. The results obtained so far in this paper still hold if we consider
the more general case of fractal mixtures. Since our aim is to prove convergence
results (see Sections 7 and 8), we have to consider the equilateral case instead of
the mixture, since for the mixture case we are not able to make an appropriate
triangulation of the domain and this tool is crucial to prove the M-convergence.
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7. M-Convergence of the functionals. We recall the definition of M-conver-
gence introduced by Mosco [39], extended to the case of proper convex functionals
in Banach spaces by Tölle (see Section 7.5, Definition 7.26 in [45]).

Let Hh be a sequence of Hilbert spaces converging to a Hilbert space H in the
sense of Definition 4.1.

Definition 7.1. A sequence of proper and convex functionals
{

Φ
(h)
p

}
defined in

Hh M-converges to a functional Φp defined in H if the following hold:
a) for every {vh} ∈ Hh weakly converging to u ∈ H in H,

lim
h→∞

Φ(h)
p [vh] ≥ Φp[u],

b) for every u ∈ H there exists {wh}, with wh ∈ Hh strongly converging to u in H
such that

lim
h→∞

Φ(h)
p [wh] ≤ Φp[u].

The main theorem of this section is the following.

Theorem 7.2. Let δh = (31−df )h =
(

3
4

)h
. Let Φp and Φ

(h)
p be defined as in (5.8)

and (5.10) respectively. Then Φ
(h)
p M-converges to the functional Φp.

We preliminary state the following propositions.

Proposition 7.3. If {vh}h∈N weakly converges to a vector u in H, then {vh}h∈N
weakly converges to u in L2(Q) and lim

h→∞
δh

∫
Sh

ϕvh dσ =

∫
S

ϕudg for every ϕ ∈

C(Q).
For the proof see Proposition 6.6 in [27].

Proposition 7.4. Let vh ⇀ u in W 1,p(Q), b ∈ C(Q). Then

δh

∫
Sh

b|vh|p dσ →
∫
S

b|u|p dg.

Proof. The proof follows from Proposition 3.7 in [14].

We are now ready to prove Theorem 7.2.

Proof. We prove conditions a) and b) in Definition 7.1.
Proof of condition a). Let vh ∈ Hh be a weakly converging sequence in H to
u ∈ H. We can suppose that vh ∈ V (Q,Sh) and

lim
h→∞

Φ(h)
p [vh] <∞

(otherwise the thesis follows trivially). Then there exists a c independent of h such
that

1

p

∫
Q

χQh |Dvh|pdL3 +
δh
p

∫
Sh

b|vh|p dσ+
δ1−p
h

p

∫
Sh

|Dvh|p dσ+
δh
p

∫
Sh

|Dyvh|p dσ ≤ c.

(7.1)
Let us suppose that vh is continuous on Q. From (7.1), in particular we have that
‖vh‖W 1,p(Qh) < c. For every h ∈ N from Theorem 3.8 there exists a bounded linear

operator Ext: W 1,p(Qh)→W 1,p(R3) such that

‖Ext vh‖W 1,p(R3) ≤ C ‖vh‖W 1,p(Qh) ≤ cC,
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with C independent of h.
We now set v̂h = Ext vh|Q. Then v̂h ∈ W 1,p(Q) and ‖v̂h‖W 1,p(Q) ≤ cC, hence

there exists a subsequence, still denoted by v̂h, weakly converging to v̂ in W 1,p(Q).
We point out that v̂h strongly converges to v̂ in Lp(Q) and also in L2(Q) since
p ≥ 2. From Proposition 7.3, vh weakly converges to u in L2(Q). We prove that
v̂ = u L3-a.e., that is ∫

Q

(v̂ − u)ϕdL3 = 0

for each ϕ ∈ L2(Q). Indeed, we can write∫
Q

(v̂ − u)ϕdL3 =

∫
Q

(v̂ − v̂h + v̂h − u)ϕdL3

=

∫
Q

(v̂ − v̂h)ϕdL3 +

∫
Qh

(vh − u)ϕdL3 +

∫
Q\Qh

(v̂h − u)ϕdL3.

(7.2)

For every ε > 0 there exists h ∈ N such that each term in the sum of the right-hand
side of (7.2) is less than ε/3. Since v̂h → v̂ in L2(Q) and vh ⇀ u in L2(Q) we deduce
our claim for the first two terms. As to

∫
Q\Qh(v̂h−u)ϕdL3, from Hölder inequality

we deduce that∫
Q\Qh

|(v̂h − u)ϕ|dL3 ≤ ‖ϕ‖L2(Q\Qh)(‖v̂h‖L2(Q) + ‖u‖L2(Q)) ≤ ε/3,

since |Q \Qh| → 0 as h→∞.
We now prove that

lim
h→∞

∫
Q

χQh |Dvh|p dL3 ≥
∫
Q

|Du|p dL3. (7.3)

It is enough to prove that χQh Dvh ⇀ Du in Lp(Q), from here the claim will follow
from the semicontinuity of the norm. Since χQh Dvh = χQh Dv̂h, this amounts to

prove that
∫
Q
χQh Dv̂hϕdL3 →

∫
Q

DuϕdL3 for every ϕ ∈ Lp′(Q).

It holds that∫
Q

DuϕdL3 −
∫
Qh

Dv̂hϕdL3 =

∫
Q

(Du−Dv̂h)ϕdL3 −
∫
Q\Qh

Dv̂hϕdL3.

The first term vanishes as h→∞ since Dv̂h ⇀ Du in Lp(Q). Now we estimate the
second term

∫
Q\Qh |Dv̂hϕ|dL3. We have∫

Q\Qh
Dv̂hϕdL3 ≤ ‖ϕ‖Lp′ (Q\Qh)‖Dv̂h‖Lp(Q) → 0.

Hence (7.3) holds.
Moreover, the following

lim
h→∞

δ1−p
h

p

∫
Sh

|Dvh|p dσ ≥ 1

p

∫
I

EF [u] dL1

holds as a consequence of Theorem 3.5 in [14] and Fatou Lemma. We are left to
prove that

lim
h→∞

δh
p

∫
Sh

|Dyvh|p dσ ≥ 1

p

∫
S

|Dyu|p dg. (7.4)

First we point out that, since vh weakly converges to u in W 1,p(Q), it follows that
vh strongly converges to u in W s,p(Q) for every s ∈ (0, 1). Hence, from Theorem
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3.5, vh|S strongly converges to u|S in Bp,p
s−

2−Df
p

(S), so in particular vh|S strongly

converges to u|S in Lp(S).
We now set wh := Dyvh ∈ Lp(Q). In order to prove (7.4), we preliminary prove

that

‖wh‖Lp(S) ≤ c.

From the density of C∞(Q) in W 1,p(Q) (see [38, Theorem 2, page 28]), there exists
a sequence {wnh}n ∈ C∞(Q) such that wnh −−−−→n→∞

wh in Lp(Sh). We want to prove

that ‖wnh‖Lp(S) ≤ c.
By proceeding as in the proof of Theorem 4.5 in [29], since wnh is continuous on

S, we can estimate the above norm in terms of the corresponding Darboux sums,
and we get ∫

S

|wnh |p dg ≤ δh
∫
Sh

|wnh |dσ. (7.5)

Passing to the upper limit as n→∞, since wnh strongly converges to wh in Lp(Sh),
from (7.1) we get

lim
n→∞

‖wnh‖Lp(S) ≤ c.

Since wnh is bounded in Lp(S), there exists a subsequence (still denoted by wnh)
weakly converging to a function w∗h in Lp(S) for n→∞. Moreover, from the lower
semicontinuity of the norm, we have

‖w∗h‖Lp(S) ≤ c.

The above inequality implies that there exists a subsequence of w∗h, again denoted
by w∗h, weakly converging to a function w∗ in Lp(S). By using again the lower
semicontinuity of the norm, we get

‖w∗‖Lp(S) ≤ lim
h→∞

∫
S

|w∗h|p dg ≤ lim
h→∞

lim
n→∞

∫
S

|wnh |p dg ≤

lim
h→∞

lim
n→∞

δh

∫
Sh

|wnh |p dσ = lim
h→∞

δh

∫
Sh

|wh|p dσ = lim
h→∞

δh

∫
Sh

|Dyvh|p dσ,

where in the last inequality we used (7.5). Hence (7.4) follows if we prove that
w∗ = Dyu a.e. in Lp(S).

By using the definition of weak convergence and distributional derivative, we get
∀ϕ ∈ Lp′(S)∫

S

w∗ϕdg = lim
h→∞

∫
S

w∗hϕdg = lim
h→∞

lim
n→∞

∫
S

wnhϕdg = lim
h→∞

∫
S

whϕdg =

lim
h→∞

∫
S

Dyvhϕdg = − lim
h→∞

∫
S

vhDyϕdg = −
∫
S

uDyϕdg =

∫
S

Dyuϕdg,

i.e. the thesis. We conclude the proof taking into account the liminf properties of
the sum and Proposition 7.4.

If vh is not continuous on Q, from Theorem 6.6 there exists wh ∈ V (Q,Sh)∩C(Q)

such that ‖vh−wh‖W 1,p(Q) ≤ 1
h , ‖vh−wh‖Lp(Q,mh) ≤ 1

h and Φ
(h)
p [wh] ≤ Φ

(h)
p [vh]+ 1

h .
By triangle inequality we easily have that wh tends to u weakly in H. Hence from
the previous step we have
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Φ(h)
p [u] ≤ lim

h→∞
Φ(h)
p [wh] ≤ lim

h→∞

(
Φ(h)
p [vh] +

1

h

)
= lim
h→∞

Φ(h)
p [vh],

i.e. the thesis.

Proof of condition b). We have to prove that for every u ∈ H there exists
{wh}h∈N strongly converging to u in H such that

Φp[u] ≥ lim
h→∞

Φ(h)
p [wh].

We can suppose that u ∈ V (Q,S). Indeed, if u /∈ V (Q,S) then Φp[u] = +∞ and
from Lemma 4.8 it follows that there exists a sequence {vh}h∈N converging to u in

H and hence lim
h→∞

Φ
(h)
p [vh] ≤ Φp[u] = +∞.

Let then u ∈ V (Q,S), i.e. u ∈W 1,p(Q) and u|F ∈ D(S). For the case p = 2, we
refer to [27]. Here we investigate the case p > 2. We have to consider two cases.

Step 1. We suppose that u ∈ C(Q), hence u ∈ H. We extend by continuity u to
T and we put û this extension. Following the same approach of [30] and [29], we

introduce a quasi uniform triangulation τh of T made by equilateral tetrahedron T jh
such that the vertices of the pre-fractal surface Sh are nodes of the triangulation at
the h-th level. Let Sh be the space of all the functions being continuous on T and
affine on the tetrahedrons of τh. We indicate by Mh the nodes of τh, that is the
set of the vertices of all T jh . For a given continuous function u, we denote by Ihu

the function which is affine on every T jh ∈ τh and which interpolates u in the nodes

Pj,i ∈Mh

⋂
Qh. We set wh = Ihû and we prove that {wh} strongly converges to u

in H, which is equivalent to prove that (see Lemma 4.5) (wh, vh)Hh → (u, v)H for
every sequence {vh} weakly converging to a vector v in H.

We know that

‖wh − u‖W 1,p(T ) → 0 (7.6)

as h goes to ∞ (see [13]) and hence ‖wh − u‖W 1,p(Q) → 0.

From Theorem 3.6, there exists a constant c independent of h such that

‖wh − u‖L2(Sh) ≤ c δ
− 1

2

h ‖wh − u‖W 1,p(Q) .

Then we have

0 ≤ |(wh, vh)Hh − (u, v)H | =

∣∣∣∣∣∣
∫
Qh

whvh dL3 + δh

∫
Sh

whvh dσ −
∫
Q

uv dL3 −
∫
S

uv dg

∣∣∣∣∣∣
=

∣∣∣∣∣∣(wh − u, vh)L2(Qh) + δh

∫
Sh

(wh − u)vh dσ + (u, vh)Hh − (u, v)H

∣∣∣∣∣∣ ≤
≤
∣∣(wh − u, vh)L2(Qh)

∣∣+
∣∣∣(√δh(wh − u),

√
δhvh)L2(Sh)

∣∣∣+ |(u, vh)Hh − (u, v)H | ≤

≤ ‖wh − u‖L2(Q) ‖vh‖L2(Q) +
√
δh ‖wh − u‖L2(Sh)

√
δh ‖vh‖L2(Sh)

+ |(u, vh)Hh − (u, v)H |
The claim follows since vh ⇀ v in H, therefore sup

h
‖vh‖Hh <∞, and√

δh ‖wh − u‖L2(Sh) ≤ c ‖wh − u‖H1(Q) .
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We now prove condition b) for the sequence wh. We note that from Proposition
7.4

lim
h→∞

δh

∫
Sh

b|wh|p dσ =

∫
S

b|u|p dg.

We have that ∫
Qh

|Dwh|p dL3 ≤
∫
Q

|Dwh|p dL3,

then, by taking the limit for h→∞, we have the thesis (since ‖D(wh−u)‖Lp(Q) → 0
for h→∞).

We have only to prove that

lim
h→∞

E(h)
p [wh] ≤ ES [u|S ].

Since wh = Ihû, we have that

wh = mj l + niy + qj , l ∈ [lj , lj+1], y ∈ [yi, yi+1],

where lj = (j − 1) 3−h and yi = (i− 1) 3−h for j = 1, . . . , 3N , i = 1, . . . ,M . Hence
we get

δ1−p
h

p

∫
I

dy

∫
Fh

|Dwh|p d` =
δ1−p
h

p

M∑
i=1

3N∑
j=1

mp
j (lj+1 − lj)(yi+1 − yi) ≤

4(p−1)h

p

M∑
i=1

3N∑
j=1

(wh(Pj+1,i+1)− wh(Pj,i))
p =

4(p−1)h

p

M∑
i=1

3N∑
j=1

(u(Pj+1,i+1)− u(Pj,i))
p ≤

∫
I

EF [u]dL1.

Passing to the upper limit, we get

lim
h→∞

δ1−p
h

p

∫
I

dy

∫
Fh

|Dwh|p d` ≤
∫
I

EF [u]dL1.

In the same way one can prove that

lim
h→∞

δh
p

∫
I

dy

∫
Fh

|Dywh|p d` ≤
∫
F

∫
I

|Dyu|pdL1dµF .

Taking into account the limsup property of the sum the conclusion of the theorem
follows.

Step 2. If u ∈ V (Q,S), but u is not continuous, from Theorem 6.4 there exists
ψn ∈ V (Q,S)

⋂
C(Q) such that ψn → u in H and ‖ψn − u‖V (Q,S) → 0. Let n ∈ N

fixed such that ‖ψn − u‖V (Q,S) ≤ 1
n and ‖ψn − u‖H ≤ 1

n . By ψ̃n we denote a

continuous extension in T .
From Step 1 we have that for every fixed n ∈ N Ihψ̃n strongly converges to ψ̃n

in H, Ihψ̃n converges to ψ̃n in W 1,p(T ) when h→∞ and

lim
h→∞

Φ
(h)
p [Ihψ̃n] ≤ Φp[ψ̃n].
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Passing to the upper limit for n → ∞ to both sides of the above inequality we
obtain

lim
n→∞

(
lim
h→∞

Φ(h)
p [Ihψ̃n]

)
≤ lim
n→∞

Φp[ψ̃n] = Φp[u].

We now want to apply Corollary 1.16 in [3] for proving that there exists an increasing

mapping h→ n(h) such that, denoting by wh = Ihψ̃n(h), we have that wh converges

to u in H and lim
h→∞

Φ
(h)
p [wh] ≤ Φp[u]. To this aim we have to prove that

lim
n→∞

lim
h→∞

|(wh,n, vh)Hh − (u, v)H | ≤ 0

for every {vh} weakly converging to v in H. Indeed we have

|(wh,n, vh)Hh − (u, v)H | ≤ |(wh,n, vh)Hh − (ψ̃n, v)H + (ψ̃n − u, v)H | ≤
|(wh,n, vh)Hh − (ψ̃n, v)H |+ ‖ψ̃n − u‖H‖v‖H ≤ |(wh,n, vh)Hh − (ψ̃n, v)H |+ c

n

Passing to the upper limit for h→∞, we obtain

lim
h→∞

|(wh,n, vh)Hh − (u, v)H | → 0.

Then Corollary 1.16 in [3] provides the thesis.

In the following Theorem we deduce the G-convergence of the associated subd-
ifferentials.

Theorem 7.5. Φ
(h)
p M-converges to Φp in H if and only if ∂Φ

(h)
p G-converges to

∂Φp.

For the proof see Theorem 7.46 in [45]. This result will be crucial for the con-
vergence of the solutions of the nonlinear abstract Cauchy problems.

8. Convergence of the solutions. We now consider the abstract homogeneous
Cauchy problem

(P )

{
du
dt +Au 3 0, t ∈ [0, T ]
u(0) = u0,

where A is the subdifferential of Φp, T is a fixed positive number, and u0 is a given
function. We now recall some results on the properties of nonlinear semigroups gen-
erated by the (opposite of) subdifferential of a proper convex lower semicontinuous
functional on a real Hilbert space (see Theorem 1 and Remark 2 in [6], see also [5]).

According to [5, Section 2.1, chapter II], we say that a function u : [0, T ] → H
is a strong solution of (P ) if u ∈ C([0, T ];H), u(t) is differentiable a.e. in (0, T ),
u(t) ∈ D(−A) a.e and du

dt +Au 3 0 for a.e. t ∈ [0, T ].

Theorem 8.1. Let ϕ : H → (−∞,+∞] be a proper, convex, lower semicontinuous
functional on a real Hilbert space H, with effective domain D(ϕ). The subdifferential

∂ϕ is a maximal monotone m-accretive operator. Moreover, D(ϕ) = D(∂ϕ). −∂ϕ
generates a (nonlinear) C0-semigroup {T (t)}t≥0 on D(ϕ) in the following sense:

for each u0 ∈ D(ϕ), the function u := T (·)u0 is the unique strong solution of the
problem 

u ∈ C(R+;H) ∩W 1,∞
loc ((0,∞);H) and u(t) ∈ D(ϕ) a.e.,

du

dt
+ ∂ϕ(u) 3 0 a.e. on R+,

u(0, x) = u0(x).
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In addition, −∂ϕ generates a (nonlinear) semigroup {T̃ (t)}t≥0 on H, where for ev-

ery t ≥ 0, T̃ (t) is the composition of the semigroup T (t) on D(ϕ) with the projection

on the convex set D(ϕ).
In our case it turns out that, from Theorem 8.1, the subdifferentials ∂Φp and

∂Φ
(h)
p are maximal, monotone and m-accretive operators on H and Hh respectively.

Then, if we denote with Tp(t) and T
(h)
p (t) the nonlinear semigroups generated by

−∂Φp and −∂Φ
(h)
p respectively, these semigroups are strongly continuous and con-

tractive on H and Hh (see Proposition 2.5 in [28] for the fractal case).
Theorem 2.7 in [28] states the following result.

Theorem 8.2. If u0 ∈ D(−A), then (P ) has a unique strong solution u ∈ C([0, T ];
H) defined as u = Tp(·)u0 such that u ∈ W 1,2((δ, T );H) for every δ ∈ (0, T ).

Moreover u ∈ D(−A) a.e. for t ∈ (0, T ),
√
tdu

dt ∈ L
2(0, T ;H) and Φp[u] ∈ L1(0, T ).

Moreover, from Theorem 2.6 in [28] it can be proved that the solution u of

problem (P ) solves the following problem ˜(P ) on Q for t ∈ (0, T ] in the following
weak sense:

(P̃ )



du
dt −∆pu = 0, in Lp

′
(Q)〈

du
dt , ψ

〉
L2(S,dg),L2(S,dg)

+
〈
∂u
∂n |Du|

p−2, ψ
〉

(B
p,p
β

(S))′,Bp,p
β

(S)

+〈
b|u|p−2u, ψ

〉
Lp
′
(S,dg),Lp(S,dg)

+ ES(u, ψ) = 0 for every ψ ∈ D(S),

u = 0 in W
1
p′ ,p(Ω̃),

u(0, P ) = u0(P ) in L2(Q,m),

where we recall that Ω̃ = (Ω× {0}) ∪ (Ω× {1}).
We now come to the pre-fractal case. For each h ∈ N fixed, we consider the

abstract homogeneous Cauchy problem

(Ph)

{
duh
dt +Ahuh 3 0, t ∈ [0, T ]

uh(0) = u
(h)
0 ,

where Ah is the subdifferential of Φ
(h)
p , T is a fixed positive number, and u

(h)
0 is a

given function.
Before stating existence and uniqueness results we give a characterization of Ah.

We recall that Ω̃h = (Ωh × {0}) ∪ (Ωh × {1}).

Theorem 8.3. Let uh(t) belong to V (Q,Sh) for a.e. t ∈ (0, T ], and f be in Hh.

Then f ∈ ∂Φ
(h)
p [uh] if and only if

(P̄h)



−∆puh = f in Lp
′
(Qh),〈

∂uh
∂nh
|Duh|p−2, ψ

〉
W
− 1
p′ ,p
′
(Sh),W

1
p′ ,p(Sh)

+ δh
〈
b|uh|p−2uh, ψ

〉
Lp
′
(Sh),Lp(Sh)

−δ1−p
h 〈∆puh, ψ〉

W−1,p′ (Sh),W1,p(Sh)

− δh 〈∆p,yuh, ψ〉
W−1,p′ (Sh),W1,p(Sh)

= δh 〈f, ψ〉
L2(Sh),L2(Sh)

for every ψ ∈W 1,p(Sh),

uh = 0 in W
1
p′ ,p(Ω̃h),

where ∂uh
∂nh

denotes the normal derivative across Sh and ∆p,y := div(|Dy|p−2Dy).
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Proof. Let f ∈ ∂Φ
(h)
p [uh], i.e. Φ

(h)
p [v] − Φ

(h)
p [uh] ≥ (f, v − uh)Hh for every v ∈

V (Q,Sh): ∫
Qh

f(v − uh) dL3 + δh

∫
Sh

f(v − uh) dσ ≤

1

p

∫
Q

χQh(|Dv|p − |Duh|p) dL3 +
δh
p

∫
Sh

b(|v|p − |uh|p) dσ +

δ1−p
h

p

∫
Sh

(|Dv|p − |Duh|p) dσ +
δh
p

∫
Sh

(|Dyv|p − |Dyuh|p) dσ. (8.1)

By choosing v = uh + tψ, with ψ ∈ V (Q,Sh) and 0 < t ≤ 1 in (8.1), we obtain

t

∫
Qh

f ψ dL3 + tδh

∫
Sh

f ψ dσ ≤

1

p

∫
Q

χQh(|D(uh + tψ)|p − |Duh|p) dL3 +
δh
p

∫
Sh

b(|uh + tψ|p − |uh|p) dσ+

δ1−p
h

p

∫
Sh

(|D(uh + tψ)|p − |Duh|p) dσ +
δh
p

∫
Sh

(|Dy(uh + tψ)|p − |Dyuh|p) dσ. (8.2)

Now, if ψ ∈ D(Qh), from (8.2) we have that∫
Qh

f ψ dL3 ≤
1

p

∫
Qh

(|D(uh + tψ)|p − |Duh|p)
t

dL3.

Then, by passing to the limit for t→ 0+, we get∫
Qh

f ψ dL3 ≤
∫
Qh

|Duh|p−2Duh Dψ dL3.

By taking −ψ in (8.2) we obtain the opposite inequality, and hence we get∫
Qh

fψ dL3 =

∫
Qh

|Duh|p−2DuhDψ dL3.

In order to apply Green formula for Lipschitz domains (see [7] and [4])∫
Qh

|Du|p−2DuDψ dL3 =

〈
∂u

∂nh
|Du|p−2, ψ|Sh

〉
W
− 1
p′ ,p
′
(Sh),W

1
p′ ,p(Sh)

+

〈
∂u

∂nh
|Du|p−2, ψ|Ω̃h

〉
W
− 1
p′ ,p
′
(Ω̃h),W

1
p′ ,p(Ω̃h)

−
∫
Qh

∆puψ dL3

we ask that w := |Duh|p−2Duh ∈ (Lp
′

div(Qh))3 := {w ∈ (Lp
′
(Qh))3 : divw ∈

Lp
′
(Qh)}. Since p ≥ 2, then p′ ≤ 2, therefore if we choose f ∈ L2(Qh) in particular

f ∈ Lp′(Qh). Hence, taking into account that ψ ∈ D(Qh), it holds that −∆puh = f

in Lp
′
(Qh) (in particular −∆puh = f in L2(Qh)) then it holds a.e. in Qh.

We go back to (8.2). Dividing by t > 0 and passing to the limit for t → 0+, we
get∫

Qh

fψ dL3 + δh

∫
Sh

fψ dσ ≤
∫
Qh

|Duh|p−2DuhDψ dL3 + δh

∫
Sh

b|uh|p−2uh ψ dσ

+δ1−p
h

∫
Sh

|Duh|p−2DuhDψ dσ + δh

∫
Sh

|Dyuh|p−2DyuhDyψ dσ.
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As above, by taking −ψ we obtain the opposite inequality, hence we get the
equality. Then, by using Green formula for Lipschitz domains and since −∆puh = f

in Lp
′
(Qh), we have

δh

∫
Sh

fψ dσ

=

∫
Sh

(
δh b|uh|p−2uh ψ + δ1−p

h |Duh|p−2DuhDψ + δh |Dyuh|p−2DyuhDyψ
)

dσ

+

〈
∂uh
∂nh
|Duh|p−2, ψ|Sh

〉
W
− 1
p′ ,p
′
(Sh),W

1
p′ ,p(Sh)

+

〈
∂uh
∂nh
|Duh|p−2, ψ|Ω̃h

〉
W
− 1
p′ ,p
′
(Ω̃h),W

1
p′ ,p(Ω̃h)

.

(8.3)

We can define ∆p as a variational operator ∆p : W 1,p
0 (Sh) → W−1,p′(Sh) in the

following way:∫
Sh

|Dz|p−2DzDw dσ = − < ∆p z, w >W−1,p′ (Sh),W 1,p(Sh) (8.4)

for z, w ∈ W 1,p
0 (Sh). We can do the same thing for the last integral in (8.3) where

the gradients with respect to y appear, by introducing the operator ∆p,y (i.e. the
p-Laplace operator with respect to y). Then from (8.3) we have that

δhf = δhb|uh|p−2uh − δ1−p
h ∆puh +

∂uh
∂nh
|Duh|p−2 − δh∆p,yuh (8.5)

holds in W
− 1
p′ ,p

′
(Sh) and uh = 0 in W

1
p′ ,p(Ω̃h).

We want now to prove the converse. Let then uh ∈ D(Φ
(h)
p ) be the weak solution

of problem (P̄h). We have then to prove that Φ
(h)
p [v]−Φ

(h)
p [uh] ≥ (f, v− uh)Hh for

every v ∈ D(Φ
(h)
p ). By using the inequality

1

p
(|a|p − |b|p) ≥ |b|p−2b(a− b) (8.6)

one gets

Φ(h)
p [v]− Φ(h)

p [uh] ≥
∫
Qh

|Duh|p−2DuhDv dL3 −
∫
Qh

|Duh|p dL3 +

δ1−p
h

∫
Sh

|Duh|p−2DuhDv dσ − δ1−p
h

∫
Sh

|Duh|p dσ +

δh

∫
Sh

|Dyuh|p−2DyuhDyv dσ − δh
∫
Sh

|Dyuh|p dσ +

δh

∫
Sh

b|uh|p−2uhv dσ − δh
∫
Sh

b|uh|p dσ. (8.7)

Since uh is the weak solution of (P̄h), by using as test functions v and uh we have

Φ(h)
p [v]− Φ(h)

p [uh] ≥ (f, v)Hh − (f, uh)Hh ,

i.e. the thesis.
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By proceeding as in Theorem 2.6 and Theorem 2.7 in [28] one can prove the
following result.

Theorem 8.4. If u
(h)
0 ∈ D(−Ah), then (Ph) has a unique strong solution uh ∈

C([0, T ];Hh) defined as uh = T
(h)
p (·)u(h)

0 such that uh ∈ W 1,2((δ, T );Hh) for every

δ ∈ (0, T ). Moreover uh ∈ D(−Ah) a.e. for t ∈ (0, T ),
√
tduh

dt ∈ L
2(0, T ;Hh) and

Φ
(h)
p [uh] ∈ L1(0, T ).
Moreover it follows that the solution uh of problem (Ph) solves for each h ∈ N

the following problem ˜(Ph) on Qh for t ∈ (0, T ] in the following weak sense:

(P̃h)



duh
dt −∆puh = 0, in Lp

′
(Qh)

δh
〈

duh
dt , ψh

〉
L2(Sh),L2(Sh)

+
〈
∂uh
∂nh
|Duh|p−2, ψh

〉
W
− 1
p′ ,p
′
(Sh),W

1
p′ ,p(Sh)

+δh
〈
b|uh|p−2uh, ψh

〉
Lp
′
(Sh),Lp(Sh)

− δ1−p
h 〈∆puh, ψh〉

W−1,p′ (Sh),W1,p(Sh)

−δh 〈∆p,yuh, ψ〉
W−1,p′ (Sh),W1,p(Sh)

= 0 ∀ ψh ∈W 1,p(Sh),

uh = 0 in W
1
p′ ,p(Ω̃h),

uh(0, P ) = u
(h)
0 (P ) in L2(Q) ∩ L2(Q,mh)

Theorem 7.2, Theorem 7.5 and Theorem 7.24 in [45] allow us to deduce that the
pre-fractal solutions converge in a suitable sense to the limit fractal one.

Theorem 8.5. Let Hh, H, Φ
(h)
p , Φp and δh be as in Theorem 7.2. Let T

(h)
p (t),

Tp(t), u
(h)
0 and u0 be as in Theorems 8.2 and 8.4. If u

(h)
0 → u0 strongly in H, then

T (h)
p (t)u

(h)
0 −−−−→

h→∞
Tp(t)u0

strongly in H for every t ≥ 0.
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