1,115 research outputs found

    Development of a graphite radiant heater

    Get PDF
    Design and tests of graphite radiant heater for high heat flux source in spacecraft thermostructural test

    Long-term X-ray changes in the emission from the anomalous X-ray pulsar 4U 0142+61

    Full text link
    We present results obtained from X-ray observations of the anomalous X-ray pulsar (AXP) 4U 0142+61 taken between 2000-2007 using XMM-Newton, Chandra and Swift. In observations taken before 2006, the pulse profile is observed to become more sinusoidal and the pulsed fraction increased with time. These results confirm those derived using the Rossi X-ray Timing Explorer and expand the observed evolution to energies below 2 keV. The XMM-Newton total flux in the 0.5-10 keV band is observed to be nearly constant in observations taken before 2006, while an increase of ~10% is seen afterwards and coincides with the burst activity detected from the source in 2006-2007. After these bursts, the evolution towards more sinusoidal pulse profiles ceased while the pulsed fraction showed a further increase. No evidence for large-scale, long-term changes in the emission as a result of the bursts is seen. The data also suggest a correlation between the flux and hardness of the spectrum, with brighter observations on average having a harder spectrum. As pointed out by other authors, we find that the standard blackbody plus power-law model does not provide the best spectral fit to the emission from 4U 0142+61. We also report on observations taken with the Gemini telescope after two bursts. These observations show source magnitudes consistent with previous measurements. Our results demonstrate the wide range of X-ray variability characteristics seen in AXPs and we discuss them in light of current emission models for these sources.Comment: 10 pages, 9 figures, in emulateapj style. Submitted to Ap

    The first multi-wavelength campaign of AXP 4U 0142+61 from radio to hard X-rays

    Get PDF
    For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in the optical and NIR with Gemini North and in the radio with the WSRT. In this paper we present the source-energy distribution. The spectral results obtained in the individual wave bands do not connect smoothly; apparently components of different origin contribute to the total spectrum. Remarkable is that the INTEGRAL hard X-ray spectrum (power-law index 0.79 +/- 0.10) is now measured up to an energy of ~230 keV with no indication of a spectral break. Extrapolation of the INTEGRAL power-law spectrum to lower energies passes orders of magnitude underneath the NIR and optical fluxes, as well as the low ~30 microJy (2 sigma) upper limit in the radio band.Comment: 6 pages, 1 figure. To be published in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 24-28, 2006, London, UK), eds. S. Zane, R. Turolla and D. Pag

    Echo-Mapping of Swift J1753.5-0127

    Get PDF
    We present two epochs of coordinated X-ray-optical timing observations of the black hole candidate Swift J1753.5-0127 during its 2005 outburst. The first epoch in July occurred at outburst peak. Two consecutive nights of observations using the McDonald Observatory Argos camera with the Rossi X-ray Timing Explorer show a consistent correlation with an immediate response and an extended tail lasting ~5s. The properties of the variability and the correlation are consistent with thermal reprocessing in an accretion disk. The shortness of the lag suggests a short orbital period consistent with that recently claimed. The second epoch in August used the VLT FORS2 HIT mode again in conjunction with RXTE. Again a repeatable correlation is seen between two independent subsets of the data. In this case, though, the cross-correlation function has an unusual structure comprising a dip followed by a double-peak. We suggest that this may be equivalent to the dip plus single peak structure seen by Kanbach et al. (2001) in XTE J1118+480 and attributed there to synchrotron emission; a similar structure was seen during later activity of Swift J1753.5-0127 by Durant et al. (2008).Comment: 7 pages, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    A Strong, Broad Absorption Feature in the X-ray Spectrum of the Nearby Neutron Star RX J1605.3+3249

    Full text link
    We present X-ray spectra taken with XMM-Newton of RX J1605.3+3249, the third brightest in the class of nearby, thermally emitting neutron stars. In contrast to what is the case for the brightest object, RX J1856.5-3754, we find that the spectrum of RX J1605.3+3249 cannot be described well by a pure black body, but shows a broad absorption feature at 27\AA (0.45 keV). With this, it joins the handful of isolated neutron stars for which spectral features arising from the surface have been detected. We discuss possible mechanisms that might lead to the features, as well as the overall optical to X-ray spectral energy distribution, and compare the spectrum with what is observed for the other nearby, thermally emitting neutron stars. We conclude that we may be observing absorption due to the proton cyclotron line, as was suggested for the other sources, but weakened due to the strong-field quantum electrodynamics effect of vacuum resonance mode conversion.Comment: 30 pages, 7 figures, accepted for publication in Ap

    Correlated Infrared and X-ray Flux Changes Following the 2002 June Outburst of the Anomalous X-ray Pulsar 1E 2259+586

    Full text link
    We present the results of a near-infrared monitoring program of the Anomalous X-ray Pulsar 1E 2259+586, performed at the Gemini Observatory. This program began three days after the pulsar's 2002 June outburst, and spans ~1.5 years. We find that after an initial increase associated with the outburst, the near-infrared flux decreased continually and reached the pre-burst quiescent level after about one year. We compare both the near-infrared flux enhancement and its decay to those of the X-ray afterglow, and find them to be remarkably consistent. Fitting simple power laws to the RXTE pulsed flux and near-infrared data for t>1 day post-burst, we find the following decay indices: alpha=-0.21+/-0.01 (X-ray), alpha=-0.21+/-0.02 (near-infrared), where flux is a function of time such that F is proportional to t^alpha. This suggests that the enhanced infrared and X-ray fluxes have a physical link post-outburst, most likely from the neutron-star magnetosphere.Comment: 11 pages, 1 figure, accepted for publication in ApJL; minor wording changes, added observation program IDs, improved figure resolutio

    The variable radio-to-X-ray spectrum of the magnetar XTE J1810-197

    Full text link
    We have observed the 5.54s anomalous X-ray pulsar XTE J1810-197 at radio, millimeter, and infrared (IR) wavelengths, with the aim of learning about its broad-band spectrum. At the IRAM 30m telescope, we have detected the magnetar at 88 and 144GHz, the highest radio-frequency emission ever seen from a pulsar. At 88GHz we detected numerous individual pulses, with typical widths ~2ms and peak flux densities up to 45Jy. Together with nearly contemporaneous observations with the Parkes, Nancay, and Green Bank telescopes, we find that in late 2006 July the spectral index of the pulsar was -0.5<alpha<0 over the range 1.4-144GHz. Nine dual-frequency Very Large Array and Australia Telescope Compact Array observations in 2006 May-September are consistent with this finding, while showing variability of alpha with time. We infer from the IRAM observations that XTE J1810-197 remains highly linearly polarized at millimeter wavelengths. Also, toward this pulsar, the transition frequency between strong and weak scattering in the interstellar medium may be near 50GHz. At Gemini, we detected the pulsar at 2.2um in 2006 September, at the faintest level yet observed, K_s=21.89+-0.15. We have also analyzed four archival IR Very Large Telescope observations (two unpublished), finding that the brightness fluctuated within a factor of 2-3 over a span of 3 years, unlike the monotonic decay of the X-ray flux. Thus, there is no correlation between IR and X-ray flux, and it remains uncertain whether there is any correlation between IR and radio flux.Comment: Accepted for publication in ApJ; contains improved discussion of infrared uncertaintie

    Recent Progress on Anomalous X-ray Pulsars

    Get PDF
    I review recent observational progress on Anomalous X-ray Pulsars, with an emphasis on timing, variability, and spectra. Highlighted results include the recent timing and flux stabilization of the notoriously unstable AXP 1E 1048.1-5937, the remarkable glitches seen in two AXPs, the newly recognized variety of AXP variability types, including outbursts, bursts, flares, and pulse profile changes, as well as recent discoveries regarding AXP spectra, including their surprising hard X-ray and far-infrared emission, as well as the pulsed radio emission seen in one source. Much has been learned about these enigmatic objects over the past few years, with the pace of discoveries remaining steady. However additional work on both observational and theoretical fronts is needed before we have a comprehensive understanding of AXPs and their place in the zoo of manifestations of young neutron stars.Comment: 10 pages, 6 figures; to appear in proceedings of the conference "Isolated Neutron Stars: From the Interior to the Surface" eds. S. Zane, R. Turolla, D. Page; Astrophysics & Space Science in pres
    corecore