51 research outputs found

    Propagation error simulations concerning the CLIC active prealignment

    Get PDF
    The CLIC1 components will have to be prealigned within a thirty times more demanding tolerance than the existing CERNmachines. It is a technical challenge and a key issue for the CLIC feasibility. Simulations have been undertaken concerning the propagation error due to the measurement uncertainties of the prealignment systems. The uncertainties of measurement, taken as hypothesis for the simulations, are based on the data obtained on several dedicated facilities. This paper introduces the simulations and the latest results obtained, as well as the facilities

    Technical Specification for the CLIC Two-Beam Module

    Get PDF
    A high-energy (0.5-3 TeV centre-of-mass), highluminosity Compact Linear Collider (CLIC) is being studied at CERN [1]. The CLIC main linacs, 21-km long each, are composed of 2-m long two beam modules. This paper presents their current layout, the main requirements for the different sub-systems (alignment, supporting, stabilization, cooling and vacuum) as well as the status of their integration

    Conceptual Design of the LHC Interaction Region Upgrade: Phase-I

    Get PDF
    The LHC is starting operation with beam. The primary goal of CERN and the LHC community is to ensure that the collider is operated efficiently and that it achieves nominal performance in the shortest term. Since several years the community has been discussing the directions for maximizing the physics reach of the LHC by upgrading the experiments, in particular ATLAS and CMS, the LHC machine and the CERN proton injector complex, in a phased approach. The first phase of the LHC interaction region upgrade was approved by Council in December 2007. This phase relies on the mature Nb-Ti superconducting magnet technology with the target of increasing the LHC luminosity to 2 to 3 10^34 cm^-2s^-1, while maximising the use of the existing infrastructure. In this report, we present the goals and the proposed conceptual solutions for the LHC IR Upgrade Phase-I which include the recommendations of the conceptual design review

    A primary electron beam facility at CERN -- eSPS Conceptual design report

    Full text link
    The design of a primary electron beam facility at CERN is described. The study has been carried out within the framework of the wider Physics Beyond Colliders study. It re-enables the Super Proton Synchrotron (SPS) as an electron accelerator, and leverages the development invested in Compact Linear Collider (CLIC) technology for its injector and as an accelerator research and development infrastructure. The facility would be relevant for several of the key priorities in the 2020 update of the European Strategy for Particle Physics, such as an electron-positron Higgs factory, accelerator R\&D, dark sector physics, and neutrino physics. In addition, it could serve experiments in nuclear physics. The electron beam delivered by this facility would provide access to light dark matter production significantly beyond the targets predicted by a thermal dark matter origin, and for natures of dark matter particles that are not accessible by direct detection experiments. It would also enable electro-nuclear measurements crucial for precise modelling the energy dependence of neutrino-nucleus interactions, which is needed to precisely measure neutrino oscillations as a function of energy. The implementation of the facility is the natural next step in the development of X-band high-gradient acceleration technology, a key technology for compact and cost-effective electron/positron linacs. It would also become the only facility with multi-GeV drive bunches and truly independent electron witness bunches for plasma wakefield acceleration. A second phase capable to deliver positron witness bunches would make it a complete facility for plasma wakefield collider studies. [...

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    Alignement général du CLIC: stratégie et progrès

    No full text
    La faisabilité concernant le pré-alignement actif du CLIC sera démontrée si l?on peut prouver qu?il existe une référence et ses capteurs associés permettant l?alignement des composants à mieux que 3 microns (1?). Pour répondre à ce challenge, une méthode de mesure d?écarts à un fil tendu est proposée, basée sur 40 ans de pratique de cette technique au CERN. Quelques problèmes demeurent concernant cette méthode : la connaissance de la forme du fil tendu utilisé comme référence droite, la détermination du géoïde à la précision souhaitée et le développement de capteurs bas coût permettant des mesures sub-micrométriques. Des études ont été entreprises afin de lever les derniers points en suspens, pendant que cette solution est intégrée dans une proposition concernant l?alignement général du CLIC. Cela implique un grand nombre d?interactions au niveau du projet, dans des domaines aussi différents que le génie civil, l?intégration, la physique du faisceau, la métrologie des éléments, la stabilisation

    The CLIC Alignment Studies: Past, Present and Future

    No full text
    CERN is studying the feasibility of building a high energy e+ e- linear collider: the CLIC (Compact LInear Collider). One of the challenges of such a collider is the prealignment tolerance on the transverse positions of the linacs components which is typically ten micrometers over distances of 200m. This paper reviews all studies carried out in order to find one possible solution for active prealignment. It describes the overall solution for the alignment proposed in 2003. It then introduces the prospects for CLIC alignment future studies. 2

    CLIC Quadrupole Module final report

    No full text
    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment
    corecore