1,110 research outputs found

    Demodulation of Spatial Carrier Images: Performance Analysis of Several Algorithms Using a Single Image

    Get PDF
    http://link.springer.com/article/10.1007%2Fs11340-013-9741-6#Optical full-field techniques have a great importance in modern experimental mechanics. Even if they are reasonably spread among the university laboratories, their diffusion in industrial companies remains very narrow for several reasons, especially a lack of metrological performance assessment. A full-field measurement can be characterized by its resolution, bias, measuring range, and by a specific quantity, the spatial resolution. The present paper proposes an original procedure to estimate in one single step the resolution, bias and spatial resolution for a given operator (decoding algorithms such as image correlation, low-pass filters, derivation tools ...). This procedure is based on the construction of a particular multi-frequential field, and a Bode diagram representation of the results. This analysis is applied to various phase demodulating algorithms suited to estimate in-plane displacements.GDR CNRS 2519 “Mesures de Champs et Identification en MĂ©canique des Solide

    A Pluralistic Theory of Wordhood

    Get PDF
    What are words and how should we individuate them? There are two main answers on the philosophical market. For some, words are bundles of structural-functional features defining a unique performance profile. For others, words are non-eternal continuants individuated by their causal-historical ancestry. These conceptions offer competing views of the nature of words, and it seems natural to assume that at most one of them can capture the essence of wordhood. This paper makes a case for pluralism about wordhood: the view that there is a plurality of acceptable conceptions of the nature of words, none of which is uniquely entitled to inform us as to what wordhood consists in

    Dewetting of thin polymer films near the glass transition

    Full text link
    Dewetting of ultra-thin polymer films near the glass transition exhibits unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)]. We present here the first theoretical attempt to understand these features, focusing on the shear-thinning behaviour of these films. We analyse the profile of the dewetting film, and characterize the time evolution of the dry region radius, Rd(t)R_{d}(t), and of the rim height, hm(t)h_{m}(t). After a transient time depending on the initial thickness, hm(t)h_{m}(t) grows like t\sqrt{t} while Rd(t)R_{d}(t) increases like exp⁥(t)\exp{(\sqrt{t})}. Different regimes of growth are expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002

    NUV/Blue spectral observations of sprites in the 320-460 nm region: N2{\mathrm N_2} (2PG) Emissions

    Full text link
    A near-ultraviolet (NUV) spectrograph (320-460 nm) was flown on the EXL98 aircraft sprite observation campaign during July 1998. In this wavelength range video rate (60 fields/sec) spectrographic observations found the NUV/blue emissions to be predominantly N2 (2PG). The negligible level of N2+ (1NG) present in the spectrum is confirmed by observations of a co-aligned, narrowly filtered 427.8 nm imager and is in agreement with previous ground-based filtered photometer observations. The synthetic spectral fit to the observations indicates a characteristic energy of ~1.8 eV, in agreement with our other NUV observations.Comment: 7 pages, 2 figures, 1 table, JGR Space Physics "Effects of Thunderstorms and Lightning in the Upper Atmosphere" Special Sectio

    Grounding knowledge and normative valuation in agent-based action and scientific commitment

    Get PDF
    Philosophical investigation in synthetic biology has focused on the knowledge-seeking questions pursued, the kind of engineering techniques used, and on the ethical impact of the products produced. However, little work has been done to investigate the processes by which these epistemological, metaphysical, and ethical forms of inquiry arise in the course of synthetic biology research. An attempt at this work relying on a particular area of synthetic biology will be the aim of this chapter. I focus on the reengineering of metabolic pathways through the manipulation and construction of small DNA-based devices and systems synthetic biology. Rather than focusing on the engineered products or ethical principles that result, I will investigate the processes by which these arise. As such, the attention will be directed to the activities of practitioners, their manipulation of tools, and the use they make of techniques to construct new metabolic devices. Using a science-in-practice approach, I investigate problems at the intersection of science, philosophy of science, and sociology of science. I consider how practitioners within this area of synthetic biology reconfigure biological understanding and ethical categories through active modelling and manipulation of known functional parts, biological pathways for use in the design of microbial machines to solve problems in medicine, technology, and the environment. We might describe this kind of problem-solving as relying on what Helen Longino referred to as “social cognition” or the type of scientific work done within what Hasok Chang calls “systems of practice”. My aim in this chapter will be to investigate the relationship that holds between systems of practice within metabolic engineering research and social cognition. I will attempt to show how knowledge and normative valuation are generated from this particular network of practitioners. In doing so, I suggest that the social nature of scientific inquiry is ineliminable to both knowledge acquisition and ethical evaluations

    Phase Transition in a Model with Non-Compact Symmetry on Bethe Lattice and the Replica Limit

    Full text link
    We solve O(n,1)O(n,1) nonlinear vector model on Bethe lattice and show that it exhibits a transition from ordered to disordered state for 0≀n<10 \leq n < 1. If the replica limit n→0n\to 0 is taken carefully, the model is shown to reduce to the corresponding supersymmetric model. The latter was introduced by Zirnbauer as a toy model for the Anderson localization transition. We argue thus that the non-compact replica models describe correctly the Anderson transition features. This should be contrasted to their failure in the case of the level correlation problem.Comment: 21 pages, REVTEX, 2 Postscript figures, uses epsf styl

    Knowledge politics and new converging technologies: a social epistemological perspective

    Get PDF
    The “new converging technologies” refers to the prospect of advancing the human condition by the integrated study and application of nanotechnology, biotechnology, information technology and the cognitive sciences - or “NBIC”. In recent years, it has loomed large, albeit with somewhat different emphases, in national science policy agendas throughout the world. This article considers the political and intellectual sources - both historical and contemporary - of the converging technologies agenda. Underlying it is a fluid conception of humanity that is captured by the ethically challenging notion of “enhancing evolution”

    Mechanistic unity of the predictive mind

    Get PDF
    It is often recognized that cognitive science employs a diverse explanatory toolkit. It has also been argued that cognitive scientists should embrace this explanatory diversity rather than pursue search for some grand unificatory framework or theory. This pluralist stance dovetails with the mechanistic view of cognitive-scientific explanation. However, one recently proposed theory – based on an idea that the brain is a predictive engine – opposes the spirit of pluralism by unapologetically wearing unificatory ambitions on its sleeves. In this paper, my aim is to investigate those pretentions to elucidate what sort of unification is on offer. I challenge the idea that explanatory unification of cognitive science follows from the Free Energy Principle. I claim that if the predictive story is to provide an explanatory unification, it is rather by proposing that many distinct cognitive mechanisms fall under the same functional schema that pertains to prediction error minimization. Seen this way, the brain is not simply a predictive mechanism – it is a collection of predictive mechanisms. I also pursue a more general aim of investigating the value of unificatory power for mechanistic explanations. I argue that even though unification is not an absolute evaluative criterion for mechanistic explanations, it may play an epistemic role in evaluating the credibility of an explanation relative to its direct competitors

    The HPS electromagnetic calorimeter

    Get PDF
    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called “heavy photon.” Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015–2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier
    • 

    corecore