144 research outputs found

    Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland

    Get PDF
    Data from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA) during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (<i>GF</i>, i.e. the relative change in particle diameter from dry diameter, <i>D</i><sub>0</sub>, to diameter measured at higher relative humidity, RH) are presented for three distinct air mass types, namely for: 1) free tropospheric winter conditions, 2) planetary boundary layer influenced air masses (during a summer period) and 3) Saharan dust events (SDE). The <i>GF</i> values at 85% RH (<i>D</i><sub>0</sub>=100 nm) were 1.40±0.11 and 1.29±0.08 for the first two situations while for SDE a bimodal <i>GF</i> distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed) are presented, which can be used for modeling purposes. <br><br> Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the <i>GF</i> measurements. This made it possible to estimate the apparent ensemble mean <i>GF</i> of the organics (<i>GF</i><sub>org</sub>) using inverse ZSR (Zdanovskii-Stokes-Robinson) modeling. <i>GF</i><sub>org</sub> was found to be ~1.20 at <i>a</i><sub>w</sub>=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol

    Features in air ions measured by an air ion spectrometer (AIS) at Dome C

    Get PDF
    An air ion spectrometer (AIS) was deployed for the first time at the Concordia station at Dome C (75 degrees 06'S, 123 degrees 23'E; 3220 ma.s.l.), Antarctica during the period 22 December 2010-16 November 2011 for measuring the number size distribution of air ions. In this work, we present results obtained from this air ion data set together with aerosol particle and meteorological data. The main processes that modify the number size distribution of air ions during the measurement period at this high-altitude site included new particle formation (NPF, observed on 85 days), wind-induced ion formation (observed on 36 days), and ion production and loss associated with cloud/fog formation (observed on 2 days). For the subset of days when none of these processes seemed to operate, the concentrations of cluster ions (0.9-1.9 nm) exhibited a clear seasonality, with high concentrations in the warm months and low concentrations in the cold. Compared to event-free days, days with NPF were observed with higher cluster ion concentrations. A number of NPF events were observed with restricted growth below 10 nm, which were termed as suppressed NPF. There was another distinct feature, namely a simultaneous presence of two or three separate NPF and subsequent growth events, which were named as multi-mode NPF events. Growth rates (GRs) were determined using two methods: the appearance time method and the mode fitting method. The former method seemed to have advantages in characterizing NPF events with a fast GR, whereas the latter method is more suitable when the GR was slow. The formation rate of 2 nm positive ions (J(2)(+)) was calculated for all the NPF events for which a GR in the 2-3 nm size range could be determined. On average, J(2)(+) was about 0.014 cm(-3) s(-1). The ion production in relation to cloud/fog formation in the size range of 8-42 nm seemed to be a unique feature at Dome C, which has not been reported elsewhere. These ions may, however, either be multiply charged particles but detected as singly charged in the AIS, or be produced inside the instrument, due to the breakage of cloud condensation nuclei (CCN), possibly related to the instrumental behaviour under the extremely cold condition. For the wind-induced ion formation, our observations suggest that the ions originated more likely from atmospheric nucleation of vapours released from the snow than from mechanical charging of shattered snow flakes and ice crystals.Peer reviewe

    Ion-induced sulfuric acid-ammonia nucleation drives particle formation in coastal Antarctica

    Get PDF
    Formation of new aerosol particles from trace gases is a major source of cloud condensation nuclei (CCN) in the global atmosphere, with potentially large effects on cloud optical properties and Earth's radiative balance. Controlled laboratory experiments have resolved, in detail, the different nucleation pathways likely responsible for atmospheric new particle formation, yet very little is known from field studies about the molecular steps and compounds involved in different regions of the atmosphere. The scarcity of primary particle sources makes secondary aerosol formation particularly important in the Antarctic atmosphere. Here, we report on the observation of ion-induced nucleation of sulfuric acid and ammonia-a process experimentally investigated by the CERN CLOUD experiment-as a major source of secondary aerosol particles over coastal Antarctica. We further show that measured high sulfuric acid concentrations, exceeding 10(7) molecules cm(-3), are sufficient to explain the observed new particle growth rates. Our findings show that ion-induced nucleation is the dominant particle formation mechanism, implying that galactic cosmic radiation plays a key role in new particle formation in the pristine Antarctic atmosphere.Peer reviewe

    Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii)

    Get PDF
    The Portable Ice Nucleation Chamber 2 (PINCii) is a newly developed continuous flow diffusion chamber (CFDC) for measuring ice nucleating particles (INPs). PINCii is a vertically oriented parallel-plate CFDC that has been engineered to improve upon the limitations of previous generations of CFDCs. This work presents a detailed description of the PINCii instrument and the upgrades that make it unique compared with other operational CFDCs. The PINCii design offers several possibilities for improved INP measurements. Notably, a specific icing procedure results in low background particle counts, which demonstrates the potential for PINCii to measure INPs at low concentrations (&lt;10 L−1). High-spatial-resolution wall-temperature mapping enables the identification of temperature inhomogeneities on the chamber walls. This feature is used to introduce and discuss a new method for analyzing CFDC data based on the most extreme lamina conditions present within the chamber, which represent conditions most likely to trigger ice nucleation. A temperature gradient can be maintained throughout the evaporation section in addition to the main chamber, which enables PINCii to be used to study droplet activation processes or to extend ice crystal growth. A series of both liquid droplet activation and ice nucleation experiments were conducted at temperature and saturation conditions that span the spectrum of PINCii's operational conditions (-50≤ temperature ≤-15 ∘C and 100 ≤ relative humidity with respect to ice ≤160 %) to demonstrate the instrument's capabilities. In addition, typical sources of uncertainty in CFDCs, including particle background, particle loss, and variations in aerosol lamina temperature and relative humidity, are quantified and discussed for PINCii.</p

    Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere

    Get PDF
    The formation of new aerosol particles in the atmosphere is a key process influencing the aerosol number concentration as well as the climate, in particular at high altitude, where the newly formed particles directly influence cloud formation. However, free tropospheric new particle formation (NPF) is poorly documented due to logistic limitations and complex atmospheric dynamics around high-altitude stations that make the observation of this day-time process challenging. Recent improvements in measurement techniques make now possible the detection of neutral clusters down to similar to 1 nm sizes, which opens new horizons in our understanding of the nucleation process. Indeed, only the charged fraction of clusters has been reported in the upper troposphere up to now. Here we report day-time concentrations of charged and neutral clusters (1 to 2.5 nm mobility diameter) recorded at the interface between the boundary layer (BL) and the FT as well as in the FT at the altitude site of Puy de Dome (1465 m a.s.l.), central France, between 10 and 29 February 2012. Our findings demonstrate that in the FT, and especially at the interface between the BL and the FT, the formation of 1.5 nm neutral clusters significantly exceeds the one of ionic clusters during NPF events, clearly indicating that they dominate in the nucleation process. We also observe that the total cluster concentration significantly increases during NPF events compared to the other days, which was not clearly observed for the charged cluster population in the past. During the studied period, the nucleation process does not seem to be sulfuric acid-limited and could be promoted by the transport of pollutants to the upper troposphere, coupled with low temperatures.Peer reviewe

    Results from the CERN pilot CLOUD experiment

    Get PDF
    During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm -3 s -1, and growth rates between 2 and 37 nm h -1. The corresponding H2O concentrations were typically around 106 cm -3 or less. The experimentally-measured formation rates and htwosofour concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 °C

    Intercomparison Study of Six HTDMAs: Results and Recommendations

    Get PDF
    We report on an intercomparison of six different hygroscopicity tandem differential mobility analysers (HTDMAs). These HTDMAs are used worldwide in laboratory experiments and field campaigns to measure the water uptake of aerosol particles and have never been intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and data analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instruments and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.JRC.H.2-Climate chang
    corecore