18 research outputs found

    A New High-Throughput Tool to Screen Mosquito-Borne Viruses in Zika Virus Endemic/Epidemic Areas

    Get PDF
    International audienceMosquitoes are vectors of arboviruses affecting animal and human health. Arboviruses circulate primarily within an enzootic cycle and recurrent spillovers contribute to the emergence of human-adapted viruses able to initiate an urban cycle involving anthropophilic mosquitoes. The increasing volume of travel and trade offers multiple opportunities for arbovirus introduction in new regions. This scenario has been exemplified recently with the Zika pandemic. To incriminate a mosquito as vector of a pathogen, several criteria are required such as the detection of natural infections in mosquitoes. In this study, we used a high-throughput chip based on the BioMarkℱ Dynamic arrays system capable of detecting 64 arboviruses in a single experiment. A total of 17,958 mosquitoes collected in Zika-endemic/epidemic countries (Brazil, French Guiana, Guadeloupe, Suriname, Senegal, and Cambodia) were analyzed. Here we show that this new tool can detect endemic and epidemic viruses in different mosquito species in an epidemic context. Thus, this fast and low-cost method can be suggested as a novel epidemiological surveillance tool to identify circulating arboviruses

    Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project

    Get PDF
    First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika.info:eu-repo/semantics/publishedVersio

    Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project

    Full text link
    First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika

    Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations

    Get PDF
    The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world’s tropical belt over the past four centuries, after the evolution of a “domestic” form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector–host contact but also as a result of enhanced vector susceptibility

    Beamforming Galvanic Coupling Signals for IoMT Implant-to-Relay Communication

    Get PDF
    Implants are poised to revolutionize personalized healthcare by monitoring and actuating physiological functions. Such implants operate under challenging constraints of limited battery energy, heterogeneous tissue-dependent channel conditions and human-safety regulations. To address these issues, we propose a new cross-layer protocol for galvanic coupled implants wherein weak electrical currents are used in place of classical radio frequency (RF) links. As the first step, we devise a method that allows multiple implants to communicate individual sensed data to each other through code division multiple access (CDMA) combined with compressive sensing (CS) method to lower the transmission time and save energy, as well as delegates the computational burden of dispreading and decoding only to the on-body surface relays. Then, we devise a distributed beamforming approach that allows coordinated transmissions from the implants to the relays by considering the specific tissue path chosen and tissue heating-related safety constraints.We then proceed to implement distributed beamforming on a phantom of human tissue and prove an increase in received signal strength and decrease in BER due to constructive interference of the signals of each implant. Our contributions are two fold: First, we devise a collision-free protocol that prevents undue interference at neighboring implants, especially for multiple deployments. Second, this is the first application of near-field distributed beamforming in human tissue. Simulation results reveal significant improvement in the network lifetime for implants of up to 79% compared to the galvanic coupled links without beamforming. Additionally, implementation on phantom tissue proves improved communication metrics when beamforming is used

    Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome

    Get PDF
    Abstract Background Host-associated microbes, collectively known as the microbiota, play an important role in the biology of multicellular organisms. In mosquito vectors of human pathogens, the gut bacterial microbiota influences vectorial capacity and has become the subject of intense study. In laboratory studies of vector biology, genetic effects are often inferred from differences between geographically and genetically diverse colonies of mosquitoes that are reared in the same insectary. It is unclear, however, to what extent genetic effects can be confounded by uncontrolled differences in the microbiota composition among mosquito colonies. To address this question, we used 16S metagenomics to compare the midgut bacterial microbiome of six laboratory colonies of Aedes aegypti recently derived from wild populations representing the geographical range and genetic diversity of the species. Results We found that the diversity, abundance, and community structure of the midgut bacterial microbiome was remarkably similar among the six different colonies of Ae. aegypti, regardless of their geographical origin. We also confirmed the relatively low complexity of bacterial communities inhabiting the mosquito midgut. Conclusions Our finding that geographically diverse colonies of Ae. aegypti reared in the same insectary harbor a similar gut bacterial microbiome supports the conclusion that the gut microbiota of adult mosquitoes is environmentally determined regardless of the host genotype. Thus, uncontrolled differences in microbiota composition are unlikely to represent a significant confounding factor in genetic studies of vector biology

    Additional file 4: of Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome

    No full text
    Table S1. Identification of bacterial genera that are differentially abundant in pairwise comparisons of colonies. P-values were obtained with a Wald test are corrected for multiple testing. The lack of a comparison between two colonies indicates that no bacterial genera were significantly different between them. (XLSX 15 kb

    Additional file 3: of Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome

    No full text
    Figure S3. OTU-independent analysis of midgut bacterial community structure confirms the lack of clustering by colony. The heat map of Bray-Curtis dissimilarity index based on k-mer abundance and hierarchical clustering shows that the sequences are structured based on the sequencing run and the day of DNA extraction, not the laboratory colony of origin. Sample names are color coded by colony and labeled according to the DNA extraction batch (a and b) and the sequencing run (* and +). In the heat map, red color indicates high similarity, whereas green color indicates low similarity. (PNG 476 kb

    Additional file 2: of Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome

    No full text
    Figure S2. The midgut bacterial communities are highly structured by sequencing run. The cluster dendrogram of individual midgut samples based on a Bray-Curtis dissimilarity matrix shows that sequencing run, and not the identity of the mosquito colony, determines bacterial community relatedness. Midgut samples are represented by numbers color coded by sequencing run. Dark blue samples were sequenced in the first run, whereas light blue samples were sequenced in the second run. (PNG 2300 kb
    corecore