20 research outputs found

    Von Willebrand factor is a major determinant of ADAMTS-13 decrease during mouse sepsis induced by cecum ligation and puncture

    Get PDF
    Summary. Background: During sepsis, von Willebrand factor (VWF) is abundantly secreted; the main mechanism regulating its size involves specific proteolysis by the metalloprotease ADAMTS-13. Objectives: To determine whether ADAMTS-13 consumption due to its binding to, and/or cleavage, of VWF contributes to its decrease during sepsis and whether abrogating or enhancing ADAMTS-13 activity influences sepsis outcome. Methods: ADAMTS-13 activity was evaluated in a model of sepsis induced by cecum ligature and puncture (CLP) in wild-type and Vwf−/− mice. Sepsis outcome was studied in those mice and in Adamts-13−/− mice. Finally, survival was studied in wild-type mice injected hydrodynamically with the human ADAMTS-13 gene. Results: In wild-type mice, CLP-induced sepsis elicited a significant ADAMTS-13 decrease, and a strong negative correlation existed between VWF and ADAMTS-13. In Vwf−/− mice, CLP also induced severe sepsis, but ADAMTS-13 was not significantly diminished. Notably, Vwf−/− mice lived significantly longer than wild-type mice. In contrast, Adamts-13−/− mice and wild-type mice were comparable with regard to thrombocytopenia, VWF concentrations, absence of thrombi, and survival. Hydrodynamic hADAMTS-13 gene transfer with the pLIVE expression vector resulted in high and stable ADAMTS13 activity in CLP mice; however, no impact on survival was observed. Conclusions: VWF secretion is a major determinant of ADAMTS-13 decrease in the CLP model, and plays an important role in sepsis-induced mortality, but the complete absence of its regulating protease, ADAMTS-13, had no detectable impact in this sepsis model. Furthermore, increasing ADAMTS-13 activity had no impact on survival

    Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans

    Get PDF
    Specific germline activating point mutations in the gene encoding the tyrosine kinase receptor FGFR3 (fibroblast growth factor receptor 3) result in autosomal dominant human skeletal dysplasias. The identification in multiple myeloma and in two epithelial cancers—bladder and cervical carcinomas—of somatic FGFR3 mutations identical to the germinal activating mutations found in skeletal dysplasias, together with functional studies, have suggested an oncogenic role for this receptor. Although acanthosis nigricans, a benign skin tumor, has been found in some syndromes associated with germinal activating mutations of FGFR3, the role of activated FGFR3 in the epidermis has never been investigated. Here, we targeted an activated receptor mutant (S249C FGFR3) to the basal cells of the epidermis of transgenic mice. Mice expressing the transgene developed benign epidermal tumors with no sign of malignancy. These skin lesions had features in common with acanthosis nigricans and other benign human skin tumors, including seborrheic keratosis, one of the most common benign epidermal tumors in humans. We therefore screened a series of 62 cases of seborrheic keratosis for FGFR3 mutations. A large proportion of these tumors (39%) harbored somatic activating FGFR3 mutations, identical to those associated with skeletal dysplasia syndromes and bladder and cervical neoplasms. Our findings directly implicate FGFR3 activation as a major cause of benign epidermal tumors in human
    corecore