1,678 research outputs found

    Heat-transfer and surface-pressure measurements for the SSME fuel-side turbopump turbine

    Get PDF
    Detailed heat flux and surface pressure distribution on the first-stage vane and blade of the Space Shuttle Main Engine fuel side turbopump turbine are examined. The specific turbine being utilized for the study is a combination of actual engine hardware and reproduced hardware consistent with that being used at NASA-Marshall for the initial measurements in their newly constructed blow-down turbine test facility. The facility is of the short duration shock tunnel variety, which permits use of thin film thermometers which are used to measure the surface temperature histories at prescribed locations on the turbine component parts. Heat flux values are then inferred from the temperature histories using standard data reduction procedures. The measurement program is described in detail

    In My Father\u27s Boots

    Get PDF

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    Significant progress was made toward the goal of developing a general purpose boundary element method for hot fluid-structure interaction. For the solid phase, a boundary-only formulation was developed and implemented for uncoupled transient thermoelasticity in two dimensions. The elimination of volume discretization not only drastically reduces required modeling effort, but also permits unconstrained variation of the through-the-thickness temperature distribution. Meanwhile, for the fluids, fundamental solutions were derived for transient incompressible and compressible flow in the absence of the convective terms. Boundary element formulations were developed and described. For the incompressible case, the necessary kernal functions, under transient and steady-state conditions, were derived and fully implemented into a general purpose, multi-region boundary element code. Several examples were examined to study the suitability and convergence characteristics of the various algorithms

    Heat transfer and pressure measurements for the SSME fuel turbine

    Get PDF
    A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade

    Phosphorylation of MCPH1 isoforms during mitosis followed by isoform‐specific degradation by APC/C‐CDH1

    Get PDF
    Microcephalin‐1 (MCPH1) exists as 2 isoforms that regulate cyclin‐dependent kinase‐1 activation and chromosome condensation during mitosis, with MCPH1 mutations causing primary microcephaly. MCPH1 is also a tumor suppressor protein, with roles in DNA damage repair/checkpoints. Despite these important roles, there is little information on the cellular regulation of MCPH1. We show that both MCPH1 isoforms are phosphorylated in a cyclin‐dependent kinase‐1–dependent manner in mitosis and identify several novel phosphorylation sites. Upon mitotic exit, MCPH1 isoforms were degraded by the anaphase‐promoting complex/cyclosome–CDH1 E3 ligase complex. Anaphase‐promoting complex/cyclosome–CDH1 target proteins generally have D‐Box or KEN‐Box degron sequences. We found that MCPH1 isoforms are degraded independently, with the long isoform degradation being D‐Box dependent, whereas the short isoform was KEN‐Box dependent. Our research identifies several novel mechanisms regulating MCPH1 and also highlights important issues with several commercial MCPH1 antibodies, with potential relevance to previously published data.—Meyer, S. K., Dunn, M., Vidler, D. S., Porter, A., Blain, P. G., Jowsey, P. A. Phosphorylation of MCPH1 isoforms during mitosis followed by isoform‐specific degradation by APC/C‐CDH1. FASEB J. 33, 2796–2808 (2019). www.fasebj.or

    36 degree step size of proton-driven c-ring rotation in FoF1-ATP synthase

    Full text link
    Synthesis of the biological "energy currency molecule" adenosine triphosphate ATP is accomplished by FoF1-ATP synthase. In the plasma membrane of Escherichia coli, proton-driven rotation of a ring of 10 c subunits in the Fo motor powers catalysis in the F1 motor. While F1 uses 120 degree stepping, Fo models predict a step-by-step rotation of c subunits 36 degree at a time, which is here demonstrated by single-molecule fluorescence resonance energy transfer.Comment: 8 pages, 1 figur

    Human indoor climate preferences approximate specific geographies

    Get PDF
    Root mean square error analysis (between indoor and outdoor climates) and results for temperature and vapor pressur

    Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids

    Get PDF
    Ionic liquids are salts used in a variety of industrial processes, and being relatively non-volatile, are proposed as environmentally-friendly replacements for existing volatile liquids. Methylimidazolium ionic liquids resist complete degradation in the environment, likely because the imidazolium moiety does not exist naturally in biological systems. However, there is limited data available regarding their mammalian effects in vivo. This study aimed to examine the effects of exposing mice separately to 2 different methylimidazolium ionic liquids (BMI and M8OI) through their addition to drinking water. Potential effects on key target organs-the liver and kidney-were examined, as well as the gut microbiome. Adult male mice were exposed to drinking water containing ionic liquids at a concentration of 440 mg/L for 18 weeks prior to examination of tissues, serum, urine and the gut microbiome. Histopathology was performed on tissues and clinical chemistry on serum for biomarkers of hepatic and renal injury. Bacterial DNA was isolated from the gut contents and subjected to targeted 16S rRNA sequencing. Mild hepatic and renal effects were limited to glycogen depletion and mild degenerative changes respectively. No hepatic or renal adverse effects were observed. In contrast, ionic liquid exposure altered gut microbial composition but not overall alpha diversity. Proportional abundance of Lachnospiraceae, Clostridia and Coriobacteriaceae spp. were significantly greater in ionic liquid-exposed mice, as were predicted KEGG functional pathways associated with xenobiotic and amino acid metabolism. Exposure to ionic liquids via drinking water therefore resulted in marked changes in the gut microbiome in mice prior to any overt pathological effects in target organs. Ionic liquids may be an emerging risk to health through their potential effects on the gut microbiome, which is implicated in the causes and/or severity of an array of chronic disease in humans

    Intestinal epithelial replacement by transplantation of cultured murine and human cells into the small intestine.

    Get PDF
    Adult intestinal epithelial stem cells are a promising resource for treatment of intestinal epithelial disorders that cause intestinal failure and for intestinal tissue engineering. We developed two different animal models to study the implantation of cultured murine and human intestinal epithelial cells in the less differentiated "spheroid" state and the more differentiated "enteroid" state into the denuded small intestine of mice. Engraftment of donor cells could not be achieved while the recipient intestine remained in continuity. However, we were able to demonstrate successful implantation of murine and human epithelial cells when the graft segment was in a bypassed loop of jejunum. Implantation of donor cells occurred in a random fashion in villus and crypt areas. Engraftment was observed in 75% of recipients for murine and 36% of recipients for human cells. Engrafted spheroid cells differentiated into the full complement of intestinal epithelial cells. These findings demonstrate for the first time successful engraftment into the small bowel which is optimized in a bypassed loop surgical model
    • 

    corecore