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1. INTRODOCTION

Significant advances in present state-of-the-art analytical and
experimental techniques are required to improve both the durability and
reliability of hot section Earth-to-orbit .éngine components. These
components, directiy in the hot gas flow path, are subjected to severe
thermal and mechanical loadings which can lead to creep-enhanced distortion
and low-cycle fatigue. As operating temperatures are pushed higher and as
more demanding applications, such as the space shuttle main engine and
future Earth-to—-orbit propulsion systems, are attempted, the envirorment in
which the hot section components must survive becomes even more severe, and
the effects of interaction between these components and the hot gas becomes
significant. Consequently, the development of increasingly durable,
structurally-efficient desizjns will benefit from the use of enhanced
analytical techniques capable of producing reliable stress, deformation,
and temperature profiles for the combined fluid-structure problem. An
analysis of these type of problems requires the combined use of solid
mechanics, fluid mechanics and heat transfer theories.

This report details progress made, during the period November 1986 -
November 1987 in a three-year program commencing in March 1986, toward the
development of a boundary element formulation specifically designed for the
study of hot fluid-structure interaction in Space Shuttle Main Engine
(SSME) hot section components. The primary thrust of the program to date
has been directed quite naturally toward the examination of fluid flow,
since boundary element methods for f£luids are at a much less developed
state. During the first year, work focused on the completion of a
comprehensive literature review of integral methods in fluids, the
development of integral formulations for both the solid and fluid, and some

preliminary infrastructural enhancements to a boundary element code to



permit incorporation of the fluid-structure problem. However, in the
second year, emphasis shifted to the implementation and validation phases.

In particular, during the past year, boundary element formulations
were implemented in two-dimensions for both the solid and the fluid. The
solid was modeled as an uncoupled themmoelastic medium under plane strain
conditions, while several formulations were investigated for the fluid.
For example, both vorticity and primative variable approaches have been
implemented for viscous, incompressible flow. More recently, compressible
versions have also been developed. All of the above boundary element
implementations were incorporated in a general purpose two-dimensional
code. Thus, problems involving intricate geometry, multiple generic
modeling regions, and aribitrary boundary conditions are all supported.

In the next section, a brief review of the most recent boundary
element literature for fluid flow is presented. This is followed by the
development of integral formulations for the solid in Section 3 and for the
fluid in Section 4. Several numerical examples are presented at the end of
each of those two sections. In the latter case, this is followed by a
discussion of the results and suitability of the various algorithms. The
remaining sections then summarize the progress achieved to date, outline
the work plan for the next year, and provide a list of references. Tables

and figures appear at the end of the corresponding section.
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2. LITERATURE REVIEW ON FLUIDS

Relatively little work has been done on the numerical solution of
fluid flow problems for intermediate and large Reynolds numbers. Much of
that work is on hybrid formulations, with integral equations used for the
surfaces and finite differences or finite elements for the fluid volume.
Pure integral equation formulations have the additional complexity that
volume integrals enter the picture. This, in retrospect, is not a serious
problem in that volume computations are restricted to those parts of the
problem where viscous effects (both Newtonian and non-Newtonian cases) are
significant. Furthermore, the vast majority of existing applications are
simply for two-dimensional test problems. The following basic formulations

are distinguished:

Velocity and Vorticity Formlations
Here pressure is replaced by vorticity, which is defined as the curl

of the velocity vector. The kinematics of flow are described by a

‘vectorial Poisson’'s equation. The kinetic aspects of the problem are

described by the vorticity transport equation, which is a parabolic, time-
dependent type of equation. Integral equation formulations for either
vectorial elliptic or parabolic equations are well understood (Wu, 1976b;
Banerjee and Butterfield, 1981). The coupling of these two equations,
however, is a much more difficult proposition. For the general case of
flow past a solid object such as an airfoil, either the velocity or the
vorticity must be specified on its surface. In addition, radiation type of
boundary conditions must hold for unbounded fluid domains. This
formulation is especially well suited for two-dimensional problems, because
the vorticity becomes a scalar.

Starting in the early seventies, Wu and his co-workers have published



extensively on their hybrid approach for time-dependent viscous flow (Wu
and Thompson, 1973; Wu et al 1974; Wu, 1976a; Sankar and Wu, 1978; Wu and
Rizk, 1978; Wu et al, 1984). This work is summarized in Wu (1982; 1984)
and the general strategy is as follows: The integral representation of the
kirematic part of the problem is by Biot-Savart’'s law that involves both
surface and volume integrals. For the case of flow past a solid body with
the frame of reference attached to that body, the surface integrals vanish
and wvhat is left is a relation between the velocity and the volume integral
of the vorticity. Viscous effects are originally concentrated only around
the surface of the solid body and subsequently spread to a small portion of
the surrounding fluid domain. Thus, it is only necessary to discretize the
boundary of the solid and the part of the volume where viscous effects are
important in order to evaluate the volume integral. Since the velocity is
zero at the so0lid surface, a relationship between vorticity at the surface
and vorticity throughout the volume is obtained through nodal collocation
(condition 1).

The integral representation of the kinetic part of the problem is in
temms of both time and space integrations. Furthemmore, space integrations
include volume terms that account for the nonlinearities in the vorticity
transport equations. Other than recasting this volume integral into more
convenient forms, it is not in general possible to convert it to a surface
integral. Standard nodal collocation then gives, at time step k, a
condition involving vorticity and its spatial derivative at the surface,
velocity-vorticity products throughout the volume, and the initial
conditions (condition 2).

A typical solution scheme is incremental/iterative in character. From
known values of the velocity and the vorticity at time step k-1 and

throughout the fluid domain, condition 2 can be used to solve for the



vorticity at time step k and at all nodes not on the surface. An iterative
procedure is required due to the presence of velocity times vorticity
terms. WNext, boundary values of the vorticity at k are found by using
condition 1. Finally, interior values of the velocity at k are computed
from the original kinetic condition. Boundary values of the velocity are
zero for this type of problem. Using this basic type of procedure Wu and
his co-workers solved a wide range of problems such as flow past a finite
flat plate under zero angle of attack. flow past circular cylinders, and
flow past airfoils. In earlier work, the vorticity transport equation was
solved by finite differences (Wu and Thompson, 1973), finite differences
with segmentation of the flow field (Wu et al, 1974), finite elements (Wu
et al, 1978a), and finite Fourier series in conjunction with the integral
representation in a conformally transformed plane (Wu and Sugavanam, 1978).

A similar approach was independently proposed by Coulmy (1976). At
first, the panel method is used for the numerical solution of the integral
equation for kinematics. This allows for expressing the velocity in terms
of the vorticity. Subsequently, the vorticity is computed in an iterative
fashion from finite differencing of the vorticity transport equation. This
work is reviewed in Coulmy and Luu (1984), where examples of flow past
turbine blades are presented. An approach where the vorticity field is
discretized by means of vortex carrying particles and velocity is related
to vorticity via Biot-Savart integral law was recently proposed for planar

problems by Choquin and Huberson (1986).

Vorticity and Stream Function Formilations

In this approach, the continuity equation is written in terms of the
stream function, the vorticity transport equation is retained, and velocity
is related to the vorticity in the usual way. A hybrid approach was

proposed in Wu and Sampath (1976), where an integral equation was used to



represent the continuity condition. Solution was cbtained in a transformed
domain, with finite differencing used for the vorticity transport equation
in conjunction with analytical/numerical treatment of the integral
equation. Onishi et al (1985) and Onishi (1986) used standard integral
equation representations for the coupled fluid flow-heat conduction system
of equations. Heat conduction is described by a parabolic type equation,
which is simpler than the vorticity transport equation. The nonlinear and
coupling terms were all expressed through volume integrals. The final
system of integral equations in both space and time was solved by the
boundary element method. ‘The examples solved were two-dimensional and
included isothermal channel flow, isothermal flow past a cylinder, and
convection-diffusion, wind driven flow in a square cavity. This work was
an extension of the authors’ work on nonlinear heat transfer problems

(Onishi and Kuruki, 1986).

Primitive Variable Formulations

Several recent efforts have focused instead on the more direct
velocity-pressure formulation. In particular, Tosaka and Kakuda (1987)
developed a primitive variable, incompressible, integral approach by using
an approximate time-dependent Stokes fundamental solution. In a second
paper, Tosaka (1987) also incorporated thermal effects. However, probably
the most important work done on this subject is that of Piva, Graziani and
Morino (1987) where they derived the fundamental solution for the linear

part of the Navier Stokes equation for incanpréssible flow.

Compressible Flow

The solution of compressible flow equations is done mostly through
finite differences or finite elements. Very little information exists on

integral equation based solutions. El-Rafaee et al (1981), for instance,



extended the approach for time dependent incompressible flow of Wu and his
co-workers described previously. This was done by adding three transport
type equations, one for each of the following dependent variables:
dilation, enthalpy, and density. These were coupled with the vorticity
transport equation and an augmented integral equation representing the
kinematic aspects of flow. A conformal transformation was used to map the
region around the airfoil to a regular region outside a circle. An
implicit finite difference scheme was used for all the transport equations.
The integral equation was numerically evaluated using Fourier series.
Problems involving flow over a plate, around a circular cylinder, and

around a Joukowski airfoil were solved by this methodology.

Non-Newtonian Pluids )

Solutions based on integral equation formulations for non-Newtonian
fluids have recently appeared in the literature. In particular, Bush et al
(1984) looked at the problem of slow steady extrusion of a jet of
Maxwellian fluid. The standard approach of integration by parts was used
for the boundary integral equations in terms of the velocity. The non-
Newtonian behavior was accounted for through a volume integral of pseudo-
body forces exactly as in elasto-plastic analysis of a solid (Banerjee and
Butterfield, 1981). The geometry of the axisymmetric problem was
discretized via boundary elements and the numerical solution was found to
be in good agreement with finite element results. Coleman (1984)
approached strong non-Newtonian incompressible flow through a complex
variable integral equation formulation for the velocity and stream
function. The problem of slow stick-slip flow in a container of finite

size was investigated.

Several, perhaps obvious, points should be noted as a conclusion to



this section. First, the set of differential equations governing the
behavior of the fluid are much more complicated than those pertaining to
the solid. Thus, it is not coincidental that applications of boundary
integral techniques for solids has reached a much more refined level, than
that for fluids. To the investigators' knowledge, the only integral
formulation that has appeared for time-dependent compressible flow is the
work done by El1 Rafaee, Wu and Lekoudis (1981). Even in this work, the
vorticity, dilatation, enthalpy, and density transport equations were
solved by finite differences. Only the kinematics were represented in
integral form. The problems solved were also of simple test problem
variety.

Also, it is evident that very little has appeared in the boundary
element literature on coupled problems. However, the present investigators
have developed a formulation for problems of coupled transient

thermoelasticity, which is the subject of the following section.



3. INTEGRAL FORMOLATION FOR SOLIDS

3.1 Introduction

In the present section, a surface only time domain boundary element
method will be described for a thermoelastic body under quasistatic
loading. Thus, transient heat conduction is included, but inertial effects
are ignored. Formulations have been developed for three-dimensional, two-
dimensional and axisymmetric problems (Dargush, 1987), however, only the 2D
plane strain case is detailed below. Separate subsections present the
governing differential equations, the integral equations, and an overview

of the numerical implementation.

3.2 Governing Eguations

With the so0lid assumed to be 2 linear thermoelastic medium, the

governing differential equations for transient thermoelasticity can be

written:
o%u, ou; 26
(A+n) RS + T (32a+2p) @ . =0 (3.1a)
173 373 1
pc, 32 = k aiz.gx_ (3.1b)
3773
where
us displacement vector
2] temperature
t time
X; Lagrangian coordinate
k thermal conductivity
P mass density
. specific heat at constant deformation
9



A,p Lame's constants

a coefficient of thérmal expansion

Standard indicial notation has been employed with summations indicated
by repeated indices. For two-dimensional problems considered herein, the
Latin indices i and Jj vary fram one to two.

Note that (3.1b) is the energy equation and that (3.1a) represents the
momentum balance in terms of displacements and temperature. The theory
portrayed by the above set of equations, formally labeled uncoupled
quasistatic thermoelasticity, can be derived from themodynamic principles.

(See Boley and Weiner (1960) for details.)

3.3 Integral Representations
Utilizing equation (3.1) for the solid along with a generalized form
of the reciprocal theorem, permits one to develop the following boundary

integral equation:

Cpaldlug(E,t) = é [(.';Bu‘ta(x,t) - E.‘Ba‘uﬁ(x.t)]dS(X) . (3.2)
where

a,p indices varying from 1 to 3

s surface of solid

u,t, generalized displacement and traction

T
ua = [u]_ u2 o]

T
t, = [t t, gl

e,q temperature, heat flux
GaB’FaB generalized displacement and traction kernels (Dargush,

1987)

CaB constants determined by the relative smoothness of s at ¢
and, for example,

10



t
Gty = § Ggp (0uti 8T t, (1) dr
0

denotes a Riemann convolution integral.

In principle, at each instant of time progressing from time zero, this
equation can be written at every point on the boundary. The collection of
the resulting equations could then be solved simultaneously, producing
exact valués for all the unknown bbundary quantities. In reality, of
course, discretization is needed to limit this process to a finite number
of equations and unknowns. Techniques useful for the discretization of

(3.2) are the subject of the following section.

3.4 WNumerical Implementation

3.4.1 Introduction

The boundary integral equation (3.2), developed in the last section,
is an exact statement. WNo approximations have been introduced other than
those used to formulate the boundary value problem. However, in order to
apply (3.2) for the solution of practical engineering problems,
approximations are required in both time and space. In this section, an
overview of a general-purpose, state-of-the-art numerical implementation is
presented. Many of the features and techniques to be discussed, in this
section, were devéloped previously for elastostatics (e.g., Raveendra,
1984) and elastodynamics (e.g., Ahmad, 1986), but are here adapted for
thermoelastic analysis.

3.4.2 Temporal Discretization

Consider, first, the time integrals represented in (3.2) as
convolutions. Clearly, without any loss of precision, the time interval
from zero to t can be divided into N equal increments of duration At.

By assuming that the primary field variables, tﬁ and ug, are constant

11



within each At time increment, these quantities can be brought outside of

the time integral. That is,

_ N nat
n
GpottgX.t) = 3 thX) | Gg (x-t.t-v)de (3.32)
n=1 (n-1)At
. N nAt .
n
Fggtug () = 3 gy [ Fg -t t-niae (3.3b)
n=1 (n-1)At

where the superscript on the generalized tractions and displacements,
obviousiy, represents the time increment number. Notice, also, that,
within an increment, these primary field variables are now functions of
position only. WNext, since the integrands remaining in (3.3) are known in
explicit form from the fundamental solutions, the required temporal

integration can be performed analytically, and written as

N+1-n nAt
Gy ®-0) = [ Gy (-t t-u)dr (3.4a)
(n-1)At
N+1-n naAt
Fgo ®-8) = | Fp (x-E,t-0)de . (3.4b)
(n-1)At

Ba B
Combining (3.3) and (3.4) with (3.2) produces

These kernel functions, G (X-f) and Fg (X-f), are detailed in Appendix B.

N
M1-n ¥+1-n
e (e =y | [ gpx-0tfm - F x-0up Jaswo
oS (3.5)

which is the boundary integral statement after the application of the

temporal discretization.

12



3.4.3 pgpatjal Discretization
With the use of generalized primary variables and the incorporation of

a piecewise constant time stepping algorithm, the boundary integral
equation (3.5) begins to show a strong resemblance to that of
elastostatics, particularly for the initial time step (i.e., N=1). In this
subsection, those similarities will be exploited to develop the spatial
discretization for the coupled quasistatic problem with two-dimensional
geometry. This approximate spatial representationwill, subsequently,
permit numerical evaluation of the surface integrals appearing in (3.5).
The techniques described here, actually, originated in the finite element
literature, but were later applied to boundary elements by Lachat and
Watson (1976).

The process begins by subdividing the entire surface of the body into
individual elements of relatively simple shape. The geometry of each
element is, then, completely defined by the coordinates of the nodal points

and associated interpolation functions. That is,

X(z) = X (0) = N,0)x4, (3.6)
with

4 intrinsic coordinates

N, shape functions

Xiw nodal coordinates

and where w is an integer varying from one to W, the number of geometric
nodes in the element. WNext, the same type of representation is used,

within the element, to describe the primary variables. Thus,
ul(2) = N (Db (3.7a)
a ® aw

tho = N (0t (3.70)

13




in which uzw and tgw are the nodal values of the generalized displacement
and tractions, respectively, for time step n. Also, in (3.7), the integer
v varies from one to 8, the total number of functional nodes in the
element. From the above, note that the same number of nodes, and
consequently shape functions, are not necessarily used to describe both the
geometric and functional variations. Specifically, in the present work,
the geometry is exclusively defined by quadratic shape functions. In two-
dimensions, this requires the use of three-noded line elements. On the
other hand, the variation of the primary quantities can be described,
within an element, by either quadratic or linear shape’functions. (The
introduction of linear variations proves computationally advantageous in
some instances.)

Once this spatial discretization has been accomplished and the body
has been subdivided into M elements, the boundary integral equation can be
rewritten as

N+1-n

Cgq(E)UR (2) =§ } é[ S KOOV @D
n=1l m=1
N+1-n
- Fg (X(=8IN, (0)ug, Bsxen 1, (3.8)

where

In the above equation, tgm and ug are nodal quantities which can be

(1]

brought outside the surface integrals. Thus,

N N+1-n
CBa(E)uB(E) = g { g tgw lGBG(X(C )-E)Nw(c )dsS(X())
n=1 m=1 -

14



N+1-n
- uf, | Fpo(X()-0IN, ()aSKE)) ) . (3.9)

Bw
The positioning of the nodal primary variables outside the integrals is, of
course, a key step, since now the integrands contain only known functions.
However, before discussing the techniques used to numerically evaluate

these integrals, a brief discussion of the singularities present in the

ga and Fga is in order.

kernels G

The fundamental solutions to the uncoupled quasistatic problem contain
singularities when the load point and field point coincide, that is, when
r=0. The same is true of Ggu and F’;a, since these kernels are derived
directly from the fundamental solutions. Series expansions of terms
present in the evolution functions can be used to deduce the level of
singularities existing in the kernels.

A number of observations concerning the results of these expansions
should be mentioned. First, as would be expected, Fib has a stronger level
of singularity than does the corresponding Gtﬂ, since an additional
derivative is involved in obtaining FJ&;& from Giﬁ' Second, the coupling
terms do not have as a high degree of singularity as do the corresponding
non-coupling terms. Third, all of the kernel functions for the first time

step could actually be rewritten as a sum of steady-state and transient

components. That is,

gl -55g . trGi

ap B

1 _ss trpl

FaB FaB + FaB *

Then, the singularity is completely contained in the steady-state portion.
: 1.
J 1]
elastostatics, while the Gée and Fée singularities are identical to those

Furthermore, the singularity in Gi and F;. is precisely equal to that for

15



for potential flow. (For two-dimensions, the subscript 6 equals three.)
This observation is critical in the numerical integration of the FaB kernel
to be discussed in the next subsection. However, from a physical
standpoint, this means simply that, at any time t, the nearer one moves
toward the load point, the closer the quasistatic response field
corresponds with a steady-state field. Eventually, when the sampling and
load points coincide, the quasistatic and steady-state responses are
indistinguishable. As a final item, after careful examination of Appendix
B, it is evident that the steady-state components in the kernels G’;B and
Fzﬂ, with n>1, vanish. 1In that case, all that remains is a transient
portion that contains no singularities. Thus, all singularities reside in

the s"""Gm’3 and ‘SS’Fﬂlﬁ components of Giﬂ and Fiﬁ. respectively.

3.4.4 Numerical Integration
Having clarified the potential singularities present in the coupled

kernels, it is now possible to consider the evaluation of the integrals in

equation (3.9). That is, for any element m, the integrals

I Ggal M- (1ESXK(r)) (3.10a)
m

[ Fhal MX@)-0N (2)aSK () (3.100)
m

will be examined. To assist in this endeavor, the following three distinct

categories can be identified:

(1) The point & does not lie on the element m
(2) The point & lies on the element m, but only non-singular or
weakly singular integrals are involved

(3) The point & lies on the element m, and the integral is strongly

singular.

16



In practical problems involving many elements, it is evident that most
of the integration occurring in equation (3.9) will be of the Category (1)
variety. In this case, the integrand is always non-singular, and standard
Gaussian quadrature formulas can be employed. Sophisticated error control
routines are needed, however, to minimize the computational effort for a
certain level of accuracy. This non-singular integration is the most
expensive part of a boundary element analysis, and., consequently, must be
optimized to achieve an efficient solution. In the present implementation,
error estimates, based upon the work of Stroud and Secrest (1966), are
employed to automatically select the proper order of the quadrature rule.
Additionally, to improve accuracy in a cost-effective manner, a graded
subdivision of the element is incorporated, especially when ¢ is nearby.
For two-dimensional problems, the integration order varies from two to
twelve, within each of up to four element subdivisions.

Turning next to Category (2), one finds that again Gaussian quadrature
is applicable, however, a somewhat modified scheme must be utilized to .
evaluate the weakly singular integrals. This is accomplished in two-
dimensional elements via suitable subsegmentation along the length of the
element so that the product of shape function, Jacobian and kernel remains
well behaved.

Unfortunately, the remaining strongly singular integrals of Category
(3) exist only in the Cauchy principal valuve sense and cannot, in general,
be evaluated mumerically, with sufficient precision. It should be noted
that this apparent stumbling block is limited to the strongly singular

portions, ssFij and SSF%, of the Fiﬂ kernel. The remainder of F}zﬁ,

tr.l
for Category (2). However, as will be discussed in the next subsection,

including and YIrl , can be computed using the procedures outlined
06 .

even the Category (3) Sspi 5 and SSpgo kernels can be accurately determined

17



by employing an indirect 'rigid body’ method originally developed by Cruse

(1974).

3.4.5 pAssembly
The complete discretization of the boundary integral equation, in both

time and space, has been described, along with the techniques required for
numerical integration of the kernels. Now, a system of algebraic equations
can be developed to permit the approximate solution of the original
quasistatic problem. This is accomplished by systematically writing (3.9)
at each global boundary node. The ensuing nodal collocation process, then,
produces a global set of equations of the form

N
S ™I - e ) = (0, (3.11)

n=1

where

(™1 1) unassembled matrix of size (d+1)P x  (d+1)Q, with

coefficients determined from (3.10a)

(FY1 Ny agcembled matrix of size (G+1)P x (d+1)P, with coefficients

determined from (3.10b) and cBa included in the diagonal

blocks

it global generalized nodal traction vector with (d+1)@
components

™ global generalized nodal displacement vector with (d+1)P
components

{0} null vector with (d+1)P components

P total number of global functional nodes

18



3.

m=1
Am number of functional nodes in element m
d dimensionality of the problem.

In the above, recall that the terms generalized displacement and traction
refer to the inclusion of the temperature and flux, respectively, as the
(d+1) component at any point.

Consider, now, the first time step. Thus, for N=1, equation (3.11)

becomes

ict1eely - Fliwety = (0} . (3.12)

However, at this point, the diagonal block of [F11 has not been completely
determined due to the strongly singular nature of ssFij and SSFOG.
Following Cruse (1974) and, later, Ahmad (1986) in elastodynamics, these
diagonal contributions can be calculated indirectly by imposing a uniform
‘rigid body’ generalized displacement field on the same body, but under
steady-state conditions. Then, obviously, the generalized tractions must

be zero, and
[58F1(1) = (0} , (3.13)

where {1} is a vector having all (d+1)P components equal to one. Using
(3.13), the desired diagonal blocks, ssFij and SSF%, can be obtained from
the summation of the off-diagonal terms of [SSFl. ~The remaining transient
portion of the diagonal block is non—singular, and hence can be evaluated

to any desired precision. With that step completed, (3.12) is rewritten as
ict1eel) - tPliely = (o) (3.14)

19



In a well-posed problem, at time At, the set of global generalized
nodal displacements and tractions will contain exactly (d+1)P unknown
components. Then, as the final stage in the assembly process, equation

(3.14) can be rearranged to form

il = Bhily , (3.15)
in which

x1) unknown components of {ul} and (t1)

tyh known components of (ul} and (t1)

(211, 18] associated coefficient matrices.

3.4.6 Solution

To obtain a solution of (3.15) for the unknown nodal quantities, a
decomposition of matrix all is required. In general, (aly isa densely
populated, unsymmetric matrix. The out-of-core solver, utilized here, was
developed originally for elastostatics fram the LINPACK software package
(Dongarra et al, 1979) and operates on a submatrix level. Within each
submatrix, Gaussian elimination with single pivoting reduces the block to
upper triangular form. The final decomposed form of tal] is stored ina
direct-access file for reuse in subsequent time steps. Backsubstitution
then completes the determination of tx1). Additional information on this
solver is available in Banerjee et al (1985),

After returning from the solver routines, the entire nodal response
vectors, {u'l}) and (¢!}, at time At are known. For solutions at later
times, a simple marching algorithm is employed. Thus, from (3.11) with

N=2,
121ty - (P21l + el1e?) - Pl = (o) . (3.16)
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Assumning that the same set of nodal components are unknown as in (3.14) for

the first time step, equation (3.16) is reformulated as
al1x?) = Bl1y?) - 21ty + FAIely (3.17)

Since, at this point, the right-hand side contains only known quantities,
(3.17) can be solved for {x2). However, the decomposed form of (al)
already exists on a direct-access file, so only the relatively inexpensive
backsubstitution phase is required for the solution.

The generalization of (3.17) to any time step N is simply

N-1
AheM = BYh - ) cMTTMe - TP ) (3.18)
n=1 :

in which the summation represents the effect of past events. By
systematically storing all of the matrices and nodal response vectors
computed during the marching process, surprisingly little computing time is
required at each new time step. In fact, for any time step beyond the
first, the only major computational task is the integration needed to form
(cY1 and [FY]. Even this process is somewhat simplified, since now the
kernels are non-singular. Also, as time marches on, the effect of events
that occurred during the first time step diminishes. Consequently, the
terms containing N1 and 1FY1 will eventually become insignificant
compared to those associated with recent events. Once that point is
reached, further integration is unnecessary, and a significant reduction in
the camputing effort per time step can be achieved.

It should be emphasized that the entire boundary element method
developed, in this section, has involved surface quantities exclusively. A
complete solution to the well-posed linear coupled quasistatic problem,

with homogeneous properties, can be obtained in terms of the nodal response
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vectors, without the need for any volume discretization. In many practical
situations, however, additional information, such as, the temperature at
interior locations or the stress at points on the boundary, is required.

The next subsection discusses the calculation of these quantities.

3.4.7 Interior Quantities

Once equation (3.18) is solved, at any time step, the complete set of
primary nodal quantities, {u®} and (tN1, is known. Subsequently, the
response at points within the body can be calculated in a straightforward
manner. For any point ¢ in the interior, the generalized displacement can

be determined from (3.9) withec, =§ That is,

Ba Ba

N M
o =Yy e, Is. Gaa' MX()-EIN (D)AS(X(2))

a
n=1 m=1

- g, Is Fho TXE@)-DN (2)dSXK() 1) . (3.19)

Now, all the modal variables on the right-hand side are known, and, as long
as, ¢ is not on the boundary, the kernel functions in (3.19) remain non-
singular. However, when ¢ is on the boundary, the strong singularity in
sst o Prohibits accurate evaluation of the generalized displacement via
(3.19), and an alternate approach is required. The apparent dilemma is
easily resolved by recalling that the variation of surface quantities is
completely defined by the elemental shape functions. Thus, for boundéxy

points, the desired relationship is simply
N .\ _ N
u (8 =W () u , (3.20)

where Nw( ;) are the shape functions for the appropriate element and
t are the intrinsic coordinates corresponding to & within that element.

Obviously, from (3.20), neither integration nor the explicit contribution
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of past events are needed to evaluate generalized boundary displacements.
In many problems, additional quantities, such as heat flux and stress,

are also important. The boundary integral equation for heat flux, can be

written
N M
qtf(g) =Y 0yt tgw fs sﬁel'“(xm DIV, (0)dS(X(2))
n=1 m=1
up, /s Dﬁel"‘(xu;) 2N, (2)aS(X(z)) 1) (3.21)
where
aGh (X (¢)-¥)
ED (X(D)=E) = = k —20 | (3.21a)
poi 084 .
aFD (X (2)-8)
Dpgs ((0)-8) = - k —E25 : (3.21b)

i

This is valid for interior points, whereas, when f is on the boundary, the

shape functions can again be used. 1In this latter case,

N, (9 = n; (D) (3.22a)
oN (2) a
) 1

which can be solved for boundary flux. Mearwhile, interior stresses can be
evaluated from

N M

o5 =Y L Y1 eh, Is Egis "(X(E)-DN, )ASEKE))
=1 m=1

N+1-n _
o I - Dpi (X(2)-3V _(£)as(X(z)) 1 (3.23)
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in which
Clek 3Gg;  9Gh-
- 2w pl it -3 Sl -5

Bpi3 (R(2)-8) = 1555 8y oy, " (agj tagy B831Cpe

(3.23a)
2 aF?l aFy,  oFp

Dhs3 (X(9-8) = $h55 8y, 5T, (gzﬂ— 3251 ) = B8Ry -

(3.23b)

Equation (3.23) is, of course, developed from (3.19). Since strong kernel
singularities appear when (3.23) is written for boundary points, an
alternate procedure is needed to determine surface stress. This alternate
scheme exploits the interrelationships between generalized displacement,
traction, and stress and is the straightforward extension of the technique
typically used in elastostatic implementations. Specifically, the

following can be obtained

n (t)o (§) = N (;)t (3.24a)
- _lLk_ - -
(g) (g q(&)+a) L (8)) BSS 4 N, (t)uy,, (3.24b)
a9x. aN
—_ N __w N

in which ulgm is obviously the nodal temperatures, and,

e
Dijk1 = Myydy + 208585 .

BEquations (3.24) form an independent set that can be solved numerically for

N

UIEj(f.) and utg’j(t) completely in terms of known nodal quantities u_ and

ttiw. without the need for kernel integration nor convolution. Notice,

however, that shape function derivatives appear in (3.24c), thus
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constraining the representation of stress on the surface element to
something less than full quadratic variation.
The interior stress kernel functions, defined by (3.23), are also

detailed in Appendix B.

3.5 Examples of Transient Thermal Stress Analysis

3.5.1 Introduction

The complete plane strain thermoelastic formulation detailed above has
been implemented in a general purpose boundary element code. Included are
facilities for multiple generic modeling regions (GMR's), sliding or spring
interfaces, symmetry, and arbitrary time-dependent boundary conditions.

Several examples are presented in the following subsections to
demonstrate the validity and applicability of this boundary-only

formulation.

3.5.2 Sudden Heating of an Aluminum Block

As a first example, transient heating of an aluminum block is examined
under plane strain conditions. The block, shown in Figure 3.1, initially
rests in themodynamic equilibrium at zero temperature. Then, suddenly,
the face at Y = 1.0 in. is elevated to 100°F, while the remaining three
faces are insulated and restrained against normal displacements. Thus,
only axial deformation in the Y-direction is permitted. Naturally, as the
diffusive process progresses, temperature builds along with the lateral

stresses o, and ¢,,. To complete the specification of the problem, the

-
following standard set of material properties are used to characterize the

aluminum:
E = 10x10% psi , v =0.33,
e = 13x10°6/%F ,
k = 25 in.-1b./sec. in.CF , pC, = 200 in.-1b./in.’°F .
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The two-dimensional boundary element idealization consists of the
simple four element, eight node model included in Pigure 3.1. A time step
of 0.4 sec. is selecﬁed. corresponding to a non-dimensional time step of
0.05. Additionally, a finite element analysis of this same problem was
conducted using a modified thermal version of the computer code CRISP (Gunn
and Britto, 1984). The finite element model is also a two-dimensional
plane strain representation, however sixteen linear strain quadralaterals
are placed along the diffusion length. In the FE run, a time step of 0.2
sec. is employed.

Temperatures, displacements, and stresses are compared in Table 3.1,
Notice that the boundary element analysis, with only one element in the
flow direction, produces-a better time-temperature history than does a
sixteen element FE analysis with a smaller time step. Both methods exhibit
greatest error during the initial stages of the process. This is the
result of the imposition of a sudden temperature change. Mearwhile, the
comparison of the overall axial displacement indicates agreement to within
3% for the BE analysis and 5% for the FE run. A steady-state analysis via
both methods produces the exact answer to three digit accuracy. The last
comparison, in the table, involves lateral stresses at an integration point
in the FE model. The boundary element results are quite good throughout
the range, however, the FE stresses exhibit considerable errof.
particularly during the initial four seconds. Actually, these finite
element stress variations are not unexpected in light of the errors present
in the temperature and displacement response. Recall that in the standard
finite element process, stresses are computed on the basis of numerical
differentiation of the displacements, whereas in boundary elements, the
stresses at interior points are obtained directly from a discretized

version of an exact integral equation. Consequently, the BE interior
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stress solution more nearly coincides with the actual response.

3.5.3 Tube and Fin Heat Exchanger

Next, a more realistic problem is examined. The thermal stress
distribution, under transient conditions, is often required to evaluate the
durability of proposed tube and fin heat exchanger designs. Consider a
stainless steel tube with a wall thickness of 0.050in. brazed to a 0.020in.
gauge fin of similar material. Figure 3.2 details the geometry. Wotice
that a fillet radius of 0.015in. is assumed between the tube and fin.

The heat exchanger is cooled continuously by a fluid at 0°F flowing
inside the tube. It is assumed that this cooling process is of sufficient
duration to produce zero temperature, uniformly, throughout the tube and
fin. Then, suddenly, at time zero the outer surfaces of the tube and fin
are exposed to a 1000°F hot gas. The convection coefficients for the inner

2°F.

and outer surfaces are 20 and 10 in.-lb./sec.in respectively.

Additionally, the following material properties for the metal apply:

E = 29%10% psi, v = 0.30,
a = 9.6x10°6/%,

k = 1.65 in.-1b./sec.in.°F, pC, = 368 in.-lb./in.soF .

Differences in material behavior near the braze joint are neglected.

For the analysis one-half of a single fin is isolated. The two-
dimensional boundary element model is depicted in Figure 3.3. The model
consists of two Generic Modeling Regions (GMR's) corresponding roughly to
the tube plus braze fillet and the fin. The tube region contains eleven
quadratic elements and twenty-two source points, while nine elements and
eighteen source points comprise the fin GMR. Some additional interior

points are included to enhance the post-processing, however the solution
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process remains boundary-only in nature.

The resulting temperature profiles are displayed in Figure 3.4 at 0.25
sec., 0.50 sec., 0.75 sec., and 1.00 sec. The red portions represent
temperatures above 750°F, while blue indicates areas below 450°F. As
expected, the thin fin, distant from the cold fluid, heats up much more
rapidly than the tube. The most severe thermal gradients exist near the
braze joint. Von Mises equivalent stresses are plotted in Figure 3.5 for
points on the inner tube surface and on the fillet radius. Interestingly,
for this particular problem, the transients are not that severe. In fact,
the peak transient thermal stresses exceed the steady-state values by only

a few percent.

3.5.4 Academic Turbine Blade

For the final thermoelastic example, a two-dimensional slice through
an ‘academic’ turbine blade is examined. The three region boundary element
model is shown in Figure 3.6. A total of sixty-four quadratic elements are
employed. The blade is assumed to be manufactured from stainless steel

with the material properties defined as follows:

E = 29x10% psi, v = 0,30,
e = 9.6x1076/%F,
k = 1.65 in.-1b./sec.in.CF, pC, = 368 in.—lb./in.sof‘.

Initially, the entire blade rests unstressed at 0°F, then beginning at time
zero all inner and outer surfaces are heated by convection. The gas
outside the blade is at 1000°F, while the inner gas temperature is 500°F.
The corresponding f£ilm coefficients are 2.5 and 3.0 in.-1b./sec.in.2°F,
respectively, except at the very tip of the blade where an outer
coefficient of 5.0 in.-lb./sec.in.2OF is assumed.

Four temperature profiles during the initial 1.6 sec. of the startup
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are depicted in Figure 3.7, in which red represents temperatures above
250°F, yellow 200°F-250°F, green 150°F-200°F, and blue corresponds to
temperatures below 150°F, Meanwhile, Figure 3.8 presents the von Mises
equivalent stress plot at 0.40 sec. Maximum stresses, greater than 40 ksi,
are displayed in red.

Once again, it should be emphasized that this is a boundary-only
solution process. No volume discretization is required, and perhaps more
importantly, steep through-the-thickness thermal gradients can be

accurately captured.
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FIGURE 3.7 - ACADEMIC TURBINE BLADE - TEMPERATURE PROFILES

ORIGINAL FAGE
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t = 0.8 sec.

t = 0.4 sec,
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FIGURE 3.8 - ACADEMIC TURBINE BLADE - EQUIVALENT STRESS PROFILE
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4. INTEGRAL FPORMULATIONS FOR FLUIDS

4.1 Introduction

Next, attention turns to the hot fluid. In the following, several
alternative integral formulations are developed for both incompressible and
compressible flow including the effects of thermal coupling. Once again,
subsections present the governing equations, the integral equations, and a

description of the numerical implementation.

4.2 Governing Differential Equations for Bot FPluid Flow

4.2.1 Time-Dependent Compressible Flow

Initially, the governing equations for a general compressible,
Newtonian fluid are presented. This set will provide the basis for the
development of the boundary integral representation. (The derivation of
these equations can be found in standard fluid mechanics texts. See
Yuan (1967), for example.)

The conservation of mass in the absence of sources and sinks in the

medium gives the equation of continuity:

a(pv,)
‘8'2 + 1 = 0

at * Tox,
X5

(4.1)

By introducing kinematics and the constitutive law for a Newtonian

fluid with constant coefficients of viscosity, the familiar Navier-Stokes

equations appear:

2 2
p (;i + vj ;Z—%) = (A+pu) a:;}. +u a:':i. - :f:' . (4.2)
3 173 3773 1
In the above,
Vi velocity vector
p pressure
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t time

X Eulerian coordinate

p mass density

A viscosity coefficients.

For a non-Newtonian fluid, additional terms appear in (4.2). However,
these terms can be conveniently considered as pseudo-body forces, exactly
as done in an elastoplastic analysis of a solid.

Next, the balance expressed by the first law of thermodynamics in

conjunction with Fourier’s law of heat conduction gives the energy equation

as
2 av.,

pe, (%§+vi§%)=k5-:—i%-i--p5;i+y (4.3)
where, again

e temperature

k thermal conductivity
and

Cv specific heat at constant volume

Y viscous dissipation.

Note that in (4.3), the thermal conductivity has been assumed constant.
Finally, the equation of state for an ideal fluid is introduced to relate

temperature and pressure. That is,

P = pRO (4.4)
in which

R gas oonstant.

The equations (4.1-4.4) represent a coupled set of six equations with six
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unknowns, namely Vi, P P and 6. By introducing a characteristic length,
velocity, and density, the above equations can be rendered dimensionless.
In this case, the familiar Reynolds number (Re) and Prandtl number (Pr)
appear.

Note that these equations have some strong similarities to the
governing equations for thermocoupled solids presented in Section 3. This
will be exploited in the development of a fluid boundary integral

formulation.

The governing differential equations can be recast by introducing the

concept of vorticity and dilatation, where vorticity, v, is defined as the

curl of the velocity,

k
wi = eijk ax (4.5)
J
and dilatation, e, is the divergence of the velocity,
V.
e = —d (4.6)
ox

In the above, €55k is the alternating tensor. Taking the curl of (4.5),

the gradient of (4.6), and making use of a vector identity leads to the

following relation between velocity, vorticity, and dilatation:

azv. 0w
3;—3‘1—=—eijka—k-+:—e- . (4.7)
3%%5 X5 %4

Next, equations (4.2) can be reformulated in terms of vorticity and

dilatation. First, taking the curl of (4.2) yields,
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c“’i duwy 8 ©y
P e Yy Ux—j) - ¥ axyxg Ty “.e

while the divergence of (4.2) produces,

2 2
de de a“e 3°p
p (— + v, —) = (A+2p) - +0 . (4.9)
at J an anan anan

The functions vy and P in (4.8) and (4.9), respectively, collect additional
terms involving Vi, vy, € and p.

Equations (4.7-4.9) along with (4.1, 4.3 and 4.4) completely define
time-dependent compressible flow. While additional equations and unknowns
appear in this alternative formulation, there are also some advantages.
Most importantly., the kinematics and the kinetics of the problem are
separated, with (4.7) expressing the kinematics and (4.8) and (4.9) the
kinetics. The kinetic equations need only be considered in regions of
nonvanishing vorticity, for the case of (4.8), and nonzero dilatation, for
(4.9). Since, in general, the vortical region will be confined to a small
portion of the entire fluid domain, significant reduction in computational
effort is possible. Additionally, it should be noted that the equations
take on a somewhat simplified and unified form. Equation (4.7) is a vector
form of Poisson’s equation for v;- while (4.8), (4.9), and (4.3) are all of
a similar nature, representing the transport of vorticity, dilatation, and

temperature, respectively.

4.2.3 Time-Dependent Incompressible Flow

For incompressibility, p is constant and the continuity condition
becomes simply

v,
—L -9

2%,
Xl

(4.10)

»
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while the equations of motion reduce to

ov, ov. azv.

i i, _ 1 ap
p (=— + v, ) = - . (4.11)
ot J 8xj anan axi

For three-dimensional problems, (4.10) and (4.11) form a system of four
equations in the unknowns vy and p. The equations of energy and state are
no longer reguired to determine fluid motion. However, under non-
isothermal conditions, the fluid temperatures can be obtained from (4.3)
after the velocities are established. The exception, to this two stage
approach, is for buoyancy driven flow in which the body forces produced by
temperature gradients are dominant. In this latter case, continuity

(4.10), momentum (4.11) and energy (4.3) conservation must be satisfied

simultaneously.

For the case of incompressible flow, the dilatation is everywhere zero

and the formulation of Section 4.2.2 simplifies. The kinematics reduce to

2
v,
i, % (4.12)

and the kinetics are completely defined by the vorticity transport equation

duw, . . .
w dw aVl 0 ml

1
P Y e T Y R, T ¢

(4.13)

Now there is a system of six equations in six unknowns, v,

i and ws. Again,

this approach has the advantage that the kinematic and kinetic aspects of
flow are separated. It has been used by a number of BEM researchers (Wu

and Thompson (1973), Coulmy (1976)) for a number of simple test problems in
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two-dimensions, where the vorticity becomes & scalar.

4.3 Integral Representations

4.3.1 Introduction

Although in the previous section, complete sets of governing
differential equations for various forms of fluid flow are described, from
the practical point of view, only the velocity, pressure and temperature

form will be sufficiently general. During the early stages of the present

work (1986-87), the vorticity formulation was implemented. It was observed

that while this formulation has some very convenient features,
incorporation of appropriate boundary conditions for a practical problem
becomes a difficult task. At the later stages of the current work, it may
be possible to incorporate these vorticity integrals within a coupled
compressible potential flow = convective heat transfer formulation to
provide a very cost effective method for the solution of the present
problem. Before such an approximate method can be developed, it is
important to examine the full scale implementation of the complete

governing equations without any approximation.

4.3.2 Fundamental Solution
It is convenient to rewrite the governing differential equations (4.1~
4.4) for the velocity - pressure - temperature formulation of compressible

viscous flow as follows:

a2 2

V. 0 V., AV
h| 1 ' 00 1
+ + 1] - - - —_—= .
(A+u) 9X.0x.. TH 0xX.0X. fl "rR ox Pr ot 0 (4.14a)
173 37)
%o B ve=o (4.14b)
o 9%, PrCy 3t .

where
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ov v,
' 1 i _ e ap
£ =-ry 3% Yy axj PR x4 x4
ov.:
= - 9o _ e _ 1
PvCv 3t PCvYy Bx PRE ox +Y
v, av.. ov ov av
R T e R L B
i %% xk 3 3

P=Prtory

P, reference density

p variable density

\Y

av.
go %% ,,—-
at * Yy axj“’ 0

p = pRS

One of the primary requirements of developing a boundary element
formulation is that the fundamental solution of the governing differential
equation (4.14) must exist. These fundamental solutions can be viewed in
same sense as the shape functions in the finite element method. For solid
mechanics these have been very well explored. Starting with Kelvin's
solution (1846), investigators such as Stokes, Poisson, Boussinesq,
Mindlin, and Nowacki have provided both static and transient solutions
which form the basis of the boundary element formulations in solid
mechanics. It is unfortunate that workers in fluid mechanics have not
found any use for these fundamental solutions in the infinite space and
therefore have not made any attempt to derive such solutions. Since the

boundary element formulations could not be developed without these
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solutione, a substantial amount cf effort was devotec in the present work
to successively derive more and more complete solutions of the differential
equations (4.14). As a first approximation the compressibility terms in
(4.14) were ignored and the complete fundamental solution for a transient
body force and a transient heat source was derived as presented below. 1In
a subsequent effort these were extended to include the effect of
compressibility, which of course, reduces the elegance of some of these
solutions and therefore is not reproduced here. It should be noted that
the time dependent incompressible solution given here can also be used for
compressible flow because the body force can be adjusted to allow for the
effects of compressibility (i.e., terms involving Py in (4.14)). The
solution presented below is developed for the three-dimensional space. The
corresponding two-dimensional case can be‘shown to formally follow the same
procedure.

The governing differential equation for an incompressible, viscous

fluid can be written as:

2 2
9°v.. 9V, ov.
) 1
(A+p) —L + ¢ LB o Ly o (4.15a)
0X.09%.. .1 . 1 ‘
1axj axjaj 247 ot
ov.
.a.._". =0 . (4.15b)
*5

Via the well-known Helmholtz decomposition the vectors vy and f i become

Vi = V’i + eijkvk,j (4.16a)

i=f,5*ei5kFk,5 (4.16b)

withV; ; =0and Fy 4 =0 for definiteness. Then, equations (4.15) become
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o]
8 (v +e 8 (v J+e:, V )
ln m,1) ,1 Cilm'm, 1 p
(l‘f'u) [ a J ] + u [ ] -
X axJ axjaxJ axi
(v +e., V. 4)
,1 -ilm'm, 1
il 3t Yo£g v enfna= 0 (4.17a)
(v ;. +e:q. V. 1)
—LLJ.lm_ml-l =0 . (4.17b)
0X.
J
But, since
d(e. )
~Silrfn)) 0
0X. ’
%3

equations (4.17) reduce to

0 d ] p
(A+u) [ . V.49 ]"’ K [ ax; V.53 * ei1m 3% ax) (Vm.jj) ]' ax

Y oF
] ov 0 m af m
p [ 'aTl' (at) + ei] axi (at ] + . + e, Tl 0 (4.18a)

Voas=0. (4.18b)

r v
"’xll‘““"’jj*"",---P-Pa'E*f}

3 ¥V

* €m gq [ “Vm,jj~— Pt T Fo ] =0 . (4.19)

For generality, the bracketed temms must vanish independently. Thus,

av
(7.+2u)V,jj -p3zp-p=0 (4.20a)

m
I-lvm,jj -p '5? + Fm =0 . (4.20b)

However, after enforcing (4.18b), these become
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-p %g -ptf =0 (4.21a)
8Vm
“Vm,j' =P 3 + Fm =0, (4.21b)

Next, a unit pulse force in the i-direction applied at point ’_‘o and time t,

must be decomposed. That is, let
fi = B(X-X,)8(t-ty)e;.

From the properties of the delta function in three dimensional space, this

can be rewritten as

S(t—to) e;

£ =" @ £,53

Yi = X{Xjo
=¥y -
But noting
B 55 = B,19 ~ eijkeximPm, 13

thus,
-1 s m
£i = 4n [ (£9,i4 ~ €ijk®am 7,13 ] .
Then, from (4.16b), the decomposition of fi can be written

& (4.22a)

r,j

S(t-to)

f=- —z;—-—— ej
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Substituting (4.22) into (4.21) yields

§(t-t )e.
PR\ AUl - s (S SUR
Pt~ P an D,5=0 (4.23a)
v, s(t-t e,
m o’k ,1
"Wm,11 T P 3t * Cmik T 4n Pa1=0. (4.23b)

The fundamental point force solution is any particular solution which

satisfies (4.23) along with the incompressibility constraint,
v oas: =0, (4.18b)

First, let the scalar function, v , be identically zero. That is, let
v(i,t;ioto) = 0. This obviouSly satisfies (4.18), and permits the

reduction of (4.23a) to simply

S(t-t )e.
p = - _—_—o—l (l) . .
4n r.,J]

Carrying out the differentiation, this can be rewritten as

_ S(t—to)e. Vs
PR.EiE b)) = ——2 &) . (4.24)
4nr

Thus, (4.24) satisfies (4.18b) and (4.23a). All that remains is to find a
solution, Vm(’:'(.t), of equation (4.23b). With that in mind, a Helmholtz

decomposition can again be applied. That is, let

Vim = Um * enijly,i (4.25)

with Ui.i = 0 for definiteness. Substituting (4.25) into (4.23b) produces
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u’m au.'.
o [ U, mi*emijY4,i11 Y-l 5+ €mij —ajfl ]

temk —am P19

or after some rearrangement

Uy Blt-ty)ey

3 2 1-0.

9. [ _ _ou } e .. 9 [ U - +
X HU-71 © P 3¢ €mij ax w911 T P 3¢ 4nr

(4.26)

For generality, both bracketed expressions must vanish independently.

However, since from (4.16a), Vﬁ m=0 it follows that u must satisfy

and consequently ,

au

at = 0 L]

Thus, let u = 0. From the second set of bracketed terms in (4.26),

an s(t-t e

J -
Wyn-resE * @ - -

This is simply a vector version of the diffusion equation. After letting
Uj = Uej’ this can be rewritten in the form of the standard scalar
diffusion equation as

ouU

3 —st T V=0 (4.27)

cU

in which

o=
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S(t-to)

v= 4npr

A particular solution of (4.27) can then be obtained by utilizing a Green's
function approach for the diffusion equation on an infinite domain with
sources V and zero initial conditions. Therefore,

U(X X, t,) = jv G(X,t:Z, )% (2,53, £ )V (2) 429

where

2
e /4

G(x,t;z,t) = (4.29)

[4nc(t-7)13/2
is the infinite space point pulse source Green's function with

2
= Y
n c(t-)

Furthermore, the volume integration in (4.28) is conducted over the

infinite space v_ and the operator ® represents a Riemann convolution

integral defined by

t t
g *h(t) = [ gtt-vIh(x)dr = [ glohit-)dr .
0 0

Now, also define

so that the source term can be rewritten as

s(t—to)
w(z.t:xo,to) = Tmpe °

Thus,
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2 ) -
: t on /4 Blr-ty) H(t-t,) e ¥ /4(tt)
» _
G*y = j 7273 de = — 3 (4.30)
0 [4nc(t-o)] npe TP [4mc(t-t )] 2
with a redefinition of n as
e L
cl(t-ty) '
Then, the substitution of (4.30) into (4.28) yields
2
H{t-t ) -n /4
o < vz . (4.31)

Ux,t:X ,t) =

To carry out this volume integration, a‘spherical coordinate system can be
constructed with the point io at the origin, as shown in Figure 4.1.
Then equation (4.31) becomes

2
n 2n H(t to) e /4

U(i.t;io,to) = j e2sinfdedpds

070 fo 4npe [4nc(t—to)]3/2

2n H(t‘to) o 7 2/
= ge N 4 sinpdede .
(4m)5/2 p[c(t-to)]3/2 fo Io

But,

Y z2+r2-2er0056)1/2

n= = (
[c(t-t)1Y2 clt-ty)

2,2 .
dn 1 e2+r’-2qrcosd 1/2 2ersind, _ _ £ &
a7 Toety ) fctety T olety) sind .

Thus,
H(t-t )c(t-t ) n 2
UK 5%, t ) = 0 °3/2 j j T ae ™ /4ande
2pr[4ﬂc(t-to)] 0 'n

where
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_ (82+r2-28r)1/2
Mo = clt-t,)
2,..2
n = (e +r +2ar)1/2 .

n c(t—to)

Next, using the substitution

Hd

n?
S=4

the integral over n becomes

| 2 u u
I " e /4 an = f T2e7Udqy = —2¢7U ’ "= -2e

"o Uo Y
Consequently,
H(t-t )c(t-t )
UK ik, b)) = - ° 372(1—
[4nc(t-t ) Pr 0
(e-r)2

_l[ e 4C(t_t0)de ] .

Now, make use of the substitutions

e+r
v= 1/2
[4C(t~to]
e-r )
y =

-+ 11/2
[4c(t to]

and rewrite the e integrals as

w _ _(e+r)2

I e dclt-ty) g, - [4c(t-to)]1/2 j
0 r

_ (e+r)2
4C(t-to)

(e+r)2

) [ j”e“ 4c(tt)) g,

e " v

1
ldc(t-t,)]
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+ 2e

(e-r)2

- dc(t-t,)



= [dc(t-t )11/2 éi‘erfc (—=
l4c(t-ty)

)

_ _(e-p)? )

[e 4ette) qp = ettt )1V/2 | eY dy
0 r

2
[4c(t—to)]1/

1/2 /7 -r
] > erfc ( 1/2) .

= [4C(t*to)
l4c(t-ty)]

H{t-t)) -r

UG E% b ) = - erfo L ) -erfc( y 1.,
o-o | [4c(t-t )1 1/2 [4c(t-to)]1/2 )

(4.32)
but, since

erfc(z) = 1 - erf(z)
erf (-z) = - erf(z)

equation (4.32) simplifies to

H(t—to) r
Ux,t:%_,t ) = erf (——) . (4.33)
o’ o dnpr —
vVic(t Eo)

With the function U now established, the fundamental solution can be

reconstructed. From (4.16a) and (4.25),

Vi =V, t* @5k kg * €i5kCklnlm, 15 °

However, since both v and u are identically zero, this reduces to

Vi = €§4k%1n’m,1j °’

which can be rewritten as
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i = Y45,15 7 04,45 = 9,158 ~ U, 548

or, for a unit pulse point force in the j-direction,

Vi(x,t;xo.to) = (U.i:] - 6iJU,kk)ej .

Therefore, the desired fundamental solution becomes

Gij(x;t;xo,to) = U:ij - SijU,kk (4.34a)
. G(t"t ) y.
P (XK 65X, b)) = —5— (=) (4.34b)
J oo 4nr r
with
B(t-t )
U= m—o— erf (—Ef—) (4.34c)
P /4c(t—to)

in which C'.‘ij is the velocity in the i-direction and I.>j is the pressure, due
to a unit pulse point force in the j-direction.

As a first approximation, this can be combined, along with the
standard diffusive unit pulse heat source solution to produce a boundary

integral formulation for non-isothermal incompressible flow. In the
compressible case, a reference density is introduced, as shown in (4.14).

Furthermore, a dilatational component apears in G; along with thermal

j!
coupling terms. The investigators are currently developing the required
fundamental solutions‘for the set of differential equations (4.14). Most
of the algebraic work is completed. Some tidying up of the final solution

is in progress.

4.3.3 Reciprocal Theorem

For any two unrelated states of body forces, surface tractions,

velocities and temperatures (fi(l),ti(l).vi(l)»e(l)) and
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(fi(”.ti(”vi(”.e(z)) existing in the same region v bounded by the

surface s, the following reciprocal integral identity holds:

: 2 1 ’ '
I [ eDey(2) 4 g Dag) v{Dae (D) glDegl2) gg
S

2(1),(2) (1)aq(2) _ (D) ae'(2) _ A(1),, (2) _
v » (4.35)

where tl' is used to denote modified surface tractions due to the inclusion
of a portion of the stress tensor within fi', as indicated in (4.14). Note

that in equation (4.35), once again, the * indicates a Riemann convolution
integral in time.

4.3.4 PBoundary Integral Equation

By introducing the (1y states corresponding to that given by
fundamental solution (unit body force and unit heat source) in the above

equation, one obtains the following integral representation for the

surface velocity:

Caa(@Ivg(e,m) = [ [ Gartaxit) - Py tvy(x,t) | ase
S

+ [ [ epareyzt) v (4.36)
v

where in two-dimensions

T

tg = [t; ty qIT

' ] ’ T
fﬁ = [fl f2 ] .

As in thermoelasticity, the Greek subscripts range from one to d+1, where d

is the dimensionality of the problem. Next, perform integration by parts
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on the third term in f{ to rewrite the boundary integral in terms of total

tractions ti' The result can be written as

epa(vg(e.e) = § [ Gttty - Fp sy Jaso
S

i §
+ [ e SR+ Gaqa(Zt) V(D) (4.37)
v
where

} T
T

f = 8. =

p 1 f ] Je 0 for j # a
P, = o, B8

i=P3E TPY oxy

The volume integral in (4.37) can be condensed further and expressed as:

Caa(IVg(E,7) = [ [ Gortaxit) - Fgrvpx,t) Jas()
)

+ [ [ auepy(z.t) + Gy efgz.t) Jv(D) . (4.38)
v

For interior quantities, velocities can be computed from (4.38) with Cga =

sﬁa’ and additionally,

aV
--(t T = [ [ Egai®tpX,t) - Dygy*vpX,) ]ds<x>

[ [ Bai®my(Zt) + Eggi®fp(7t) JAV(B) + J45m(3,7)
v

where Jai is a discontinuity term arising out of the treatment of the

improper volume integral involving P .. Mearwhile, the interior velocity
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and temperature rates can be computed from:

av . . .
st 60 = [ [ Grtaxt) - Fgavgx,ty Jaseo + f [ gpergpzt) Jven .
S v

4.4 WNumerical Implementation

4.4.1 gurface_and Volume Integrations

The numerical treatment of the equations in fluid dynamics coupled
with heat transfer follows very closely that described in Section 3 for
transient thermal stress analysis. Interestingly, all of the singularities
of the functions G and F on the boundaries, as well as, in the interior are
identical. However, now the volume must be subdivided into cells. The
geometry of each cell is again defined by nodal points and quadratic shape
functions. In two-dimensions, six and eight-noded cells are available.
The guadratic geometric variation permits representation of intricate
shapes with a minimal number of cells. Meanwhile, either a linear or
quadratic variation can be employed for the functional representation.

Formally, then, for any cell,
Z(z) = z; () = M (D)zg,

= n
£.00) = M(f g,

where
4 intrinsic coordinates
M, M, shape functions
Ziy nodal coordinates of cell
fzw nodal value of body force .
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In the above, the index w varies from one to the number of geometric nodes,
while v ranges from one to the mumber of functional nodes in the cell under
consideration. With this spatial discretization in mind, the integral

equations can now be rewritten. For the generalized velocity this becomes

N M
N = n N"’l‘_n z)- 4
Cg o (EIVR (D) nzl{mzlt tho fs_Gpa | K(S)EIN,()ES(E))

- VB, Is_ Fio. X () =8N, (£)dS(X () ]

n N+1-n
+m§1[ me jﬁh GBa (Z(z)-EM (2)aqv(z(z)) ]}

where
L
V=)>)v
mzl m

and L is the number of volume cells. A similar expression results for the
strain rates. The integration techniques requirgd for the evaluation of
the surface integrals have been discussed in Section 3.4.4. For volume
integration, as in the surface integration techniques, subsegmentation and
variable quadrature order are used to control error with separate schemes
employed for singular and non-singular cases. Specific details on this
volume integration algorithm can be found in Mustoe (1984), Raveendra
(1984), and Banerjee and Raveendra (1986).

The explicit form of the kernel functions Gﬂa, FBa' EBai and DBai have
been developed for the two-dimensional case and are presented in Appendix
C. As would be expected, these functions reduce to within a spatially
independent constant of their steady-state counterparts when t —» o,

Furthermore, in a manner identical to that described for the thermoelastic

solid, these kernels decompose into a singular steady-state portion plus a
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non-singular transient component.

4.4.2 The Treatment of Continuity Equation

The continuity eguation for a compressible flow takes the role of the

elastoplastic constitutive equation in solid mechanics. Recalling the

continuity equations

p=p_ + (4.398,)

2 dp b

where p is the density.
It is recessary to satisfy these equations at discrete nodal points.

By defining a global shape function, the density variation can be

interpolated as

M
pxh) = § cixl, eMo(e™ for 1 = 1,2,...,M (4.40)
m=1
lemy -4 __F - 1/2 - Jl_gm
where Clx=,g™ =1 — where r = (y,y;) and y; = xj-¢;

Lax = the maximum distance between any two points of the region.

In order to satisfy (4.39), the values of p (or pv), ap/axj, vj and avj/axj

must be calculated. Of these, Vs and avj/axj are obtained directly from

the boundary or interior integral representations. The value of p or P, is

obtained from (4.40) and its gradient is calculated via

M
o—xh) = § pyedieMoce™ (4.41)
J m=1
where
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l1.,m Y
J 3 Tmax T

By utilizing the known values at time t in the continuity equation, the
unknown density at t+At can be obtained assuming a Crank-Nicolson type y-

algorithm. Thus:

L 1) = (R;) (4.42)
where
' _ 1, teat __1 1, 1.Im t+At, , 1, 1.1m
Lim = [+ (X)}C v Vj(x)}Dj
R - [E+ant ——1 oh T+ [ (-, xh ] aa”
J J
Once {Qm} is determined, the required gquantities t+Atp(xl) and t+At az (x1)
j
can be computed from (4.40) and (4.41).
4.4.3 Algorithm for Incremental Iterative Solutjon

The final system of algebraic equations resulting from the previous

integral representations can be expressed as

APx - cPf - BYy (4.432)

v = A% + BYy + G'f (4.43b)

v = A% + BV + QVf (4.43c)

e = A®x + B®y + GBf (4.43d)
where

X,y are the known and unknown boundary quantities

v,v are the velocity and acceleration vectors
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e are velocity gradients

An iterative algorithm similar to the initial stress method (Banerjee and

Butterfield, 1981) can then be developed as follows:

1. Increment boundary conditions

2. Assume £ =0

3. Calculate the boundary and interior solutions x.v,\.z and e

4, Detemmine £, v, and p, at this time increment

5. Calculate the boundary and interior solutions again

6. If the solution is not significantly different from (3), go to

(1); if the solution is different, then go to (4).

4.4.4 Algorit or Di t utjon

Just as the finite element method can be used to obtain the solution
of a nonlinear system either iteratively or directly using incrementally
updated system equations, analogous techniques can be developed for the
boundary element method. The direct BEM algorithm was developed recently
for elastoplasticity by Banerjee and Raveendra (1987) and Henry and
Banerjee (1988). For the computational fluid dynamics problem the same
underlying principle can also be used to develop a direct algorithm.

Equations (4.43) can be rewritten for this purpose as:
APx + BBy + GPf = o (4.442)
e - A% - B%y + G®f = 0 (4.44b)
By pre multiplying (4.44b) by v! one obtains
vTe - vIA®x - vIB®y + VIGEE = O . (4.45)

Noting that vie = £, (4.45) and (4.44a) combine to produce
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ab e X Py

vIAt I-viGE £ vTBeyJ

(4.46)

Equation (4.46) can be solved directly if v, Py Or p can be estimated for

the next increment. This does, of course require at least one iteration.

If substructuring is necessary, the above equation can be expressed

for a problem involving n subregions as:

£
All _Gl A12 O see Aln O Xl
T _ T.f
via, a-vef o 0 0 0 £,
A 0 A -t A 0 X
21 22 2 2n 2 | _
0 0 via, (1-vief ) ... 0 0 £,
0 0 -Gf X
Anl An2 et Ahn n n
0 0 0 0 vIa_  (1-vlcE ) £
n n n
L |

This block banded set of equations must be formulated and decomposed

on each iteration.

4.5 Examples of Viscous Flow Analysis

4.5.1 Introduction

The various fluid formulations, described in the foregoing, are in
various stages of development. For incompressible flow, both iterative and
direct algorithms have been implemented, although validation has been
completed only under steady-state conditions. On the other hand, the
compressible flow formulation has again been implemented, but serious

testing of the algorithm awaits completion of the new time-dependent
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compressible kernels mentioned in Section 4.3.2.
In the following subsections, several examples are presented to

demonstrate the validity of the present boundary element formulations.

4.5.2 Driven Cavity

The two-dimensional driven cavity has become the standard test problem
for incompressible computational fluid dynamics codes. In a way, this is
unfortunate because of the ambiguities in the specification of the boundary
conditions. However, numerous results are available for comparison
purposes.

The incompressible fluid of uniform viscosity is confined within a
unit square region. The fluid velocitigs on the left, right and bottom
sides are fixed at zero, while a uniform non-zero velocity is specified in
the x-direction along the top edge. Wormal (y-direction) velocity is also
zero on the top surface. Thus, in the top corners, the x-velocity is not
clearly defined. To alleviate this difficulty in the present analysis,
this velocity component is smoothed out as indicated in Figure 4.2.
Additionally, steady-state conditions have been assumed and the forcing
velocity is slowly incremented to achieve the desired Reynolds number.

Several levels of mesh refinement, as shown in Figure 4.3, were
examined to determine the effect on accuracy and convergence. Spatial
plots of the resulting velocity vectors for the twenty-four cell model are
presented in Figure 4.4 for Reynolds numbers (Re) of 0, 100 and 250.
Mearwhile, Figure 4.5 contains the velocity distribution along the vertical
cavity centerline. All of these results correlate closely with those
obtained by Burggraf (1966) in his classic paper on steady separated flows.
However, as Re increases, the convective terms begin to dominate the

viscous ones, and then problems with numerical instability arise. 1In the
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current boundary element analysis, results diverge as Re reaches a certain
value dependent, initially, upon mesh refinement. Beyond a certain level
of mesh refinement, though, no improvement was found. Table 4.1 contains
the approximate Reynolds number at divergence for the various cell patterns
displayed in Figure 4.3. Additionally, decreased increment size and/or
increased number of iterations had little effect on the divergent character
of this problem

The thirty-six cell model was also run as a three region problem as
defined in Figure 4.6. This dramatically reduced computing time, since now
integration is limited to withi-n each individual region. At low Re,
results were quite good, thus verifying the multi-GMR approach.
Convergence was enhanced to the extent that solutions could be attained up
to Re = 300. Figure 4.7 contains velocity vector plots at Re = 250, 300,
and 325, The latter is an unconverged result. Notice the disturbances
entering the solution near the center of the cavity.

Next, the direct algorithm described in Section 4.4.4 was utilized for
the same problem. In this case, computational effort increased
dramatically, since interior forces are added to the list of primary
unknowns. While convergence was generally achieved with only a few
iterations in the lower Reynolds number range, the divergent character of
the solution process remained unaltered. That is, even with a fine mesh,
divergence occurred at approximately Re = 300.

Interestingly, the same phenomenon occurs in both finite difference
and finite element approaches in approximately the same Reynolds number
range. In these methods, upwinding schemes (Allen and Southwell, 1955;
Henrich and Zienkiewicz, 1979) and artificial dissipation (Hughes et al,
1979) have been devised to enhance convergence. This would occur almost

automatically in a transient boundary element formulation because these
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upwvinding schemes and dissipations are part of the transient solutions. As
an initial test of the transient formulation, the cavity was examined with
an abrupt jump in velocity along the upper edge at time zero. Results at
four different time steps, for Ry = 100, are shown on Figure 4.8, Notice

that eventually the steady-state solution is achieved.

4.5.3 PBuoyancy Driven Flow

The domain is again the unit square cavity. Velocity is zero on all
boundaries, while the top and bottom edges are insulated. The temperature
of the right edge is maintained at zero, but the left face temperature is
slowly elevated under steady-state conditions. By including the body
forces due to buoyancy, the existing terﬁperature gradients produce free
convection within the cavity. The resulting steady-state velocity vector
distribution for a Grashof number of 100 is presented in Figure 4.9, while
the corresponding temperature variation along three vertical planes is
plotted in Figure 4.10. Again, in a manner similar to that encountered in
the previous example, convergence difficulties arise in the steady state
case as the temperature gradients (i.e., the Grashof number) are elevated
beyond a critical value. A transient solution would probably not have the

same difficulty.

4.5.4 Unconfined Flow Around Obstacles

Boundary element models have been constructed for flow around a

‘simplified blade as shown in Figure 4.11. Preliminary results have been

obtained. This problem will be investigated more thoroughly in the next

few months.

4.6 Discussion
Obviously, based upon the results of the numerical studies presented

in the previous subsection, significant improvements in the current
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boundary element implementation for the fluid are still needed. First of
all, the recent introduction of the time-dependent kernel functions
described in Section 4.3 should help considerably. With time dependence,
as Reynolds number increases the transition is from parabolic to hyperbolic
behavior, rather than from elliptic to hyperbolic. From a numerical
standpoint, this is much more forgiving. 1In fact, it is not surprising
that most finite difference and finite element approaches to steady-state
flows utilize either a real or psuedo time stepping approach.

Secondly, the introduction of compressibility into the system should
have a positive effect. Experience in plasticity, for example, has
indicated that more accurate solutions are attainable for compressible
materials. In addition, there is considerable room for improvement in the
non-linear solution algorithms. Presently, only simple iteration has been
investigated, however, implicit schemes, Newton-Raphson methods, and

optimization techniques may prove beneficial.
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FIGURE 4.2 - DRIVEN CAVITY PROBLEM DEFINITION
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FIGURE 4.3 - DRIVEN CAVITY BOUNDARY ELEMENT MODELS
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FIGURE 4.4 - DRIVEN CAVITY VELOCITY DISTRIBUTION
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FIGURE 4.5

DRIVEN CAVITY (INCOMPRESSIBLE VISCOUS FLOW)
VELOCITY PROFILE
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TABLE 4.1 —~ DRIVEN CAVITY DIVERGENCE CHARACTERISTICS

Mesh Refinement

HORIZONTARL VELOCITY at X=8.5

(Number of Cells)

8
12
24
36
72

Apprqximate Re
at Divergence
30
65
260
260
250

72
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FIGURE 4.7 - DRIVEN CAVITY VELOCITY DISTRIBUTION (THREE REGION MODEL)
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FIGURE 4.8 - DRIVEN CAVITY - TRANSIENT RESPONSE
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FIGURE 4.9
BUOYANCY DRIVEN CRVITY

VELOCITY DISTRIBUTION

FIGURE 4.10

BUOYANCY DRIVEN CAVITY
TEMPERATURE PROFILE
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5. SOMMARY (F PROGRESS

As is evident from the previous two sections, significant progress has
been made toward the goal of developing a general purpose boundary element
method for hot fluid-structure interaction. For the solid phase, a
boundary-only formulation was developed and implemented for uncoupled

transient thermoelasticity in two dimensions. The elimination of volume

discretization not only drastically reduces required modeling effort, but

also permits unconstrained variation of the through-the-thickness
temperature distribution. Consequently, it is expected that this
formulation can provide an attractive alternative to finite element methods
for transient thermal stress analysis, particularly when accurate stresses
are required. It should be noted that the BEM detailed in Section 3 is the
first boundary-only implementation for this class of problems.

Meanwhile, for the fluid, significant strides have also been made.
Fundamental solutions have been derived for transient incompressible and
compressible flow in the absence of the convective terms. Bouhdary element
formulations have been developed as well and were described in Section 4.
For the incompressible case, the necessary kernel functions, under
transient and steady-state conditions, have been derived and fully
implemented into a general purpose, multi-region boundary element code.
Several examples have been examined in detail to study the suitability and
convergence characteristics of the various algorithms.

While considerable effort is still needed to produce a useful
analytical tool for high Reynolds number hot gas flow, the development to
date does represent a substantial advancement in the state-of-the-art.
Table 5.1 is provided in order to highlight the status of the major

components of the overall hot fluid-structure interaction program
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6. WORKFLAN FOR THE NEXT YEAR

The following tasks are planned, in approximate chronological order,

for the period November 1987 - March 1989:

1.

2,

Complete the time-dependent compressible flow kernel development
and general-purpose implementation.

Begin validation of the time-dependent formulations. After the
initial debugging phase, download the code to the NASA Cray for
this task.

Investigate enhanced non-linear solution algorithms for Navier-
Stokes flow.

Develop and implement a thermally-sensitive inviscid,
compressible flow formulation.

Implement interface cddihg for fluid-solid interaction.

Assess suitability for large scale development of boundary

element methods for hot fluid-structure interaction.
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APPENDIX B - KERNELS FOR THERMOELASTICITY

This appendix contains the detailed presentations of all the kernel
functions utilized in the formulations contained in Section 3. Two-
dimensional (plane strain) kernels are provided, based upon continuous
source and force fundamental solutions. For time-dependent uncoupled
quasistatic thermoelasticity the following relationships must be used to
determine the proper form of the functions required in the boundary element

discretization. That is,

Gop (X=8) = Gg (X-E,nAt) for n=1

G“B (X-¢&)

a GaB(X—gpn.At) = GaB(X—C, (n_l)At) fOX.’ n>1 »

with similar expressions holding for all the remaining kernels. 1In the

specification of these kernels below, the arguments (X-&,t) are assumed.

The indices

i,j,k,1 vary from1 to d
a,B vary from 1 to (d+1)

0 equals d+1

where d is the dimensionality of the problem. Additionally,

X§ coordinates of integration point
g5 coordinates of field point

2 _
Yi = %i7% )£ B

For the displacement kernel,

Y-y.
Gy = 1 5D - (8, (3-4v)In r ]
J 8n u(l1-v) r ]
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whereas, for the traction kernel,
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In the above,
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For the interior stress kernels,
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APPENDIX C -~ KERNELS POR VISCOUS, INCOMPRESSIBLE FLOW

This appendix contains details of the time-dependent incompressible
kernels necessary for the integral formulations of Section 4. WNotation is
consistent with that defined in Appendix B.

For the generalized velocity kernels,

2
Yi¥y s,(e)  E (%)
Gij=4n [(r ) {syle) - (859 —5— - =3 } ]
Gig = ©
G0j=0
2
El(%)
Goo = 77 @ [ ]

whereas, for the generalized traction kernel,
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Meanwhile, for the interior strain rates,
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