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Human engineering of the outdoors led to the development of

the indoor niche, including home construction. However, it is

unlikely that domicile construction mechanics are under

direct selection for humans. Nonetheless, our preferences

within indoor environments are, or once were, consequential

to our fitness. The research of human homes does not

usually consider human evolution, and, therefore, we are

without previous predictions about indoor climate

preference. We worked with citizen scientists to collect

indoor climate data from homes (n ¼ 37) across the USA. We

then compared these data to recent global terrestrial climate

data (0.58 grid cells, n ¼ 67 420) using a climate dissimilarity

index. We also compared some climate-related physiological

parameters (e.g. thermoneutral zone (TNZ)) between humans

and a selection of non-human primates. On average, our

study homes were most similar in climate to the outdoor

conditions of west central Kenya. We found that the indoor

climates of our study homes largely matched the TNZ of

humans and other primates. Overall, we identified the

geographical distribution of the global outdoor climate that is

most similar to the interiors of our study homes and

summarized study home indoor climate preferences.
1. Introduction
Climate plays an important role in the life history of most

organisms, and the influence of climate on the ecology,

evolution and distribution of organisms has been the subject of

many thousands of studies. Similarly, outdoor climates

themselves have been the subject of a rich body of work, both

in terms of current climate, projected future climate and

modelled or measured historic climates. Yet, somehow, the
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relationship between humans and climate, particularly the climate in the ecological realm we spend the

most time in, our homes, remains poorly studied, particularly with regard to the ecology and evolution

of humans and the many thousands of species that live alongside us [1,2].

Dawkins coined the term extended phenotype to describe the extent to which an organism’s genes

encode not only its body and behaviour but also the ways in which that organism might manipulate

the environment [3]. The termite’s nest is part of its extended phenotype [4] and is mediated both by

genes associated with behaviour and the rules those genes influence, just as the warren of a mouse is

part of its [5]. Recent work has even begun to understand the individual genes associated with deer

mice (Peromyscus spp.) and when they build one type of warren relative to another [6]. But what

about humans? It would be difficult to convincingly argue that the behaviours leading to the

construction of human houses are under direct selection. Many humans (the authors of this paper

included) could not build a modern house if their life depended on it, yet we persist. However, the

issue may be more subtle than it at first seems; human preferences influence human houses. Our

houses are built to reflect both comfortable temperatures and levels of humidity [7,8]. If our house is

too hot or cold, we modify it in such a way as to produce more heat and vice versa [9]. However, for

thousands of years before air conditioning, we also modified conditions through construction or

placement of homes that buffered outdoor climates with passive measures such as sun shading,

thermal mass and ceiling architecture, to both to make them liveable and to make them comfortable

[10,11].

For ectotherms, a large body of the literature considers how individual organisms alter their climate

[12]. Species seek favoured climates or employ body postures that alter the temperature to which they are

exposed [13–16]. In social insects, some species even alter the climate around them, and particularly their

brood, whether through collective behaviours (e.g. honey bees [17]) or through the constructions the

behaviours create (e.g. nests [18]). Similar phenomena are reported for mammals, but often

anecdotally, especially for primates including humans [19]. The relationship of humans with climate is

complex [20,21]. We thermoregulate [22], acclimate [23], and, over time, we have even adapted in as

much as individual human lineages appear to demonstrate physiological and anatomical differences

associated with their historic climates [24]. Yet, the defining way in which we have responded to

outdoor climate, since the advent clothing, no less than 20 000 years ago, is to modify the climate we

are exposed to in order to maximize thermal comfort [25].

A rich literature considers the many proximate factors that influence thermal comfort. Thermal

comfort can be influenced by culture [11,26], by wind speed and humidity [27–30] and mean radiant

temperature [31,32]. This literature suggests that the many ways in which the climate people prefer for

their homes might be modulated and why. But what these do not change is the reality that thermal

comfort itself, evolved.

What do we favour about these indoor climatic conditions? Are they similar to the climate of our

ancestors? Which (outdoor) climate are we attempting to reconstruct when we turn the heat up or

down? These questions seem to have been given little consideration, perhaps for two reasons. First,

there is a paucity of reported indoor climate data across seasons for occupied homes, which would

allow direct comparison with outdoor climates except where specific house types are being compared

(e.g. traditional versus modern homes [26,27]). Second, the people who study indoor environmental

quality (e.g. homes and their interior climates) do so in the context of creating interior spaces that

promote comfort and productivity rather than in an ecological or evolutionary context [33,34].

Understanding the climates humans construct in light of human ecology and evolution has relevance

not only to understanding why we build homes the way we do (and how we might make more

reasoned decisions in the future), but also the climate that we create for other organisms indoors. The

indoor biome is one of the most rapidly growing biomes on Earth [35], yet its climatic features have

not been well characterized with regards to species ecology, nor have they been compared to other,

outdoor climates. Such a comparison is necessary in order to understand which climates we have

replicated indoors and which species might be most predisposed, in terms of climate, to live with us

in the future, whether wanted or unwanted. As many as several hundred thousand species have been

found living in homes [1,2], and the question of the climate that these species inhabit is relevant to

the basic biology of a broad swathe of life.

Here, we worked with citizen scientists to record the climate within homes across the USA. We first

characterize the indoor climates of these homes, then we compare these indoor climates with what is

known about the climatic tolerances of non-human primates, and finally, we identify specific

geographies from across the globe whose climate is most similar to the observed indoor climates. In

considering which (global) outdoor climates these North American homes are most similar to, we
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argue that there are two consequences of the conditions that we prefer in our homes. First, the climates

we prefer have strong effects on global energy usage and how that usage varies geographically. Second,

and perhaps less obviously, in constructing our homes and modulating their climate as an extension of

our phenotype (and to some extent culture) we might also recreate specific climates for other organisms,

favouring the subset of species that prefer the same climates as we do [35].
publishing.org/journal/rsos
R.Soc.open
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2. Material and methods
2.1. Climate datasets
With the assistance of citizen scientists, we collected indoor and outdoor climate data from homes from

each state of the USA and Washington, DC using a temperature (8C) and relative humidity (%) data

logger (iButton model DS1923-F5, Maxim Integrated Products, Inc., Sunnyvale, CA, USA) that is

commonly used in ecological studies [36]. For indoor climate measurements, participants were

instructed to place the data logger on a surface with a low risk of physical disturbance, and away

from any air vents, windows or direct sunlight (e.g. shelf, bookcase). Participants were asked to place

the outdoor climate logger in a location that was disturbance free and shaded. The data collection

period was February 2013–April 2014, and temperature and humidity were recorded once per hour.

During initial data processing, prior to analysis, we removed homes that did not have records from

summer, winter and, at least, spring or autumn; 37 homes were retained (additional information on

study homes available as electronic supplementary material, table S1). To align the indoor air

moisture variable with that of the global outdoor data, we calculated vapour pressure (hPa) from

indoor temperature and relative humidity observations using the August–Roche–Magnus equation

[37]. Home climate data were converted to monthly averages prior to analyses. We examined the

relationship between indoor and outdoor home temperatures with linear regression, fitting regressions

for both vapour pressure and temperature by season. All analyses were performed in R [38] (version

3.3.2; http://www.R-project.org). This research was approved by the NC State University IRB review

board under IRB Protocol 2177. We received written consent from all participants.

Global, outdoor climate data were acquired from the University of East Anglia Climatic Research

Unit’s Time-Series Version 3.21 High Resolution Gridded Data [39] (CRU TS3.21; http://catalogue.

ceda.ac.uk). This dataset is constructed from monthly observations from terrestrial meteorological

stations from across the globe. Station anomalies are interpolated to 0.58 grid cells (n ¼ 67 420

terrestrial cells excluding Antarctica) and combined with an existing climatology [40] to derive

absolute monthly values. We used the 2012 CRU TS3.21 monthly air temperature (8C) and vapour

pressure (hPa) data for our analyses.

2.2. Climate dissimilarity
We calculated the dissimilarity between North American indoor and global outdoor climates, using the

climatic parameters air temperature (8C) and vapour pressure (hPa), to determine if indoor climates

approximated outdoor climates of specific geographies. For our dissimilarity analyses, we used six

climate variables: minimum mean air temperature and mean vapour pressure for winter, mean air

temperature and mean vapour pressure for spring/autumn, and maximum air temperature and mean

vapour pressure for summer. Seasons were defined as follows for the Northern and Southern

Hemispheres, respectively: December–February (winter/summer), March–May (spring/autumn),

June–August (summer/winter), September–November (autumn/spring). Spring and autumn were

analysed as one season, averaging spring and autumn values as needed. Air temperature and air

moisture are often-used climatic variables when considering indoor climate and human thermal

comfort [29,41]. These parameters have also been used in studies of climate analogues [42].

We used a standardized Euclidian distance to compute a climate dissimilarity index [42,43] between

each home and global grid cell (equation (2.1)), using the climate variables described above.

Cij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X6

k¼1

(gkj � hki)
2

S2
ki

vuut , ð2:1Þ

where C is the climate dissimilarity index between each indoor i and outdoor j location. Where k is the

climate variable (n ¼ 6), h is the mean of the indoor climate variable k at i, g is the mean outdoor climate
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variable k at j, and S2

ki is the standard deviation of the indoor climate variable. Climate dissimilarity

indices are a common tool used to compare climates separated by space and/or time and to find the

climate that is most or least similar to a focal climate [42,44–46]. We also calculated the root mean

square errors for temperature and vapour pressure between each home and global grid cell, and the

methods and results of these analyses can be found in the electronic supplementary material,

appendix A.
lishing.org/journal/rsos
R.Soc.open
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3. Results
3.1. Indoor climates
The mean maximum temperature in the summer for the 37 homes ranged from 22.22 to 34.638C, with a

mean of 27.27+0.468C (standard error of the mean); mean vapour pressure ranged from 10.22 to

25.28 hPa with a mean of 16.15+0.46 hPa (figure 1). The mean minimum temperature in winter

ranged from 8.38 to 228C, with a mean of 16.44+ 0.528C, and mean vapour pressure ranged from

4.98 to 22.33, with a mean of 8.75+ 0.54 hPa. The mean temperature of spring/autumn ranged from

17.52 to 25.378C, with a mean of 21.51+ 0.288C, and mean vapour pressure ranged from 8.26 to

23.59 hPa, with a mean of 12.82+0.46 hPa.

Outdoor air temperature was a significant predictor of indoor home temperature by season, but the

strength of these associations was modest (table 1). The relationship between outdoor and indoor

temperature was especially weak in winter (t ¼ 2.88, adjusted R2 ¼ 0.04, p , 0.001). Associations of

outdoor and indoor home vapour pressure were generally stronger than the same comparisons for

temperature (table 1). The weakest relationship between outdoor and indoor home vapour pressure

was found in summer (t ¼ 7.69, adjusted R2 ¼ 0.30, p , 0.001).

3.2. Most similar indoor and outdoor climates
We identified the outdoor location(s) with the most similar climate for each of our study homes (table 2).

The indoor climate from the Oregon home, for example, had the smallest observed C and was a close

match (C ¼ 0.3812) with a grid cell in Kenya (0.258 N, 35.258 E). By contrast, the indoor climate for

the Missouri home had the greatest minimum C (3.765) for its most similar outdoor climate (1.758 N,

35.258 E) which was also located within Kenya. To generalize the climate similarities, we also

considered the 100 most similar outdoor climates for each home. The Hawaii home had the lowest

mean C (0.900+0.014) and these global grid cell centres that were most often located in Brazil

(figure 2) and the Missouri home also had the greatest minimum mean C (4.120+ 0.017), and the

locations of these global grids most often occurred in Ethiopia.

Considering all global cells (n ¼ 67 420), the location with the least similar climate to the mean North

American indoor climate was located within northern Greenland (79.758 N, 39.258 W; C ¼ 39.874). In

other words, to achieve the indoor conditions found in North America, someone in Greenland would

have to alter indoor conditions relative to outdoor conditions more than anywhere else on Earth.

Conversely, the location with the most similar climate was located in west central Kenya (1.258 N,

35.758 E; C ¼ 2.938). In west central Kenya, outdoor conditions are essentially the same as the mean

conditions created inside homes in North America.

We were interested in identifying potential global, outdoor locations from which the species

associated with North American homes might be most expected to have come. To this end, we used

the overall mean climatic dissimilarity metric (C ) from our study homes to identify the 100 (of 67 420)

most similar global grid cells (figure 3). The value distributions of the climate variables used in the

climate dissimilarity index can be viewed in figure 1.
4. Discussion
Here, we present data on observed indoor climate from homes across the North America (figure 1).

Indoor environments are important for humans; the average person in the USA spends, for example,

less than 10% of their time outdoors [47]. In spite of numerous reports of human thermal preferences

inside buildings and codified climatic prescriptions (e.g. ASHRAE Standard 55) for construction of

interior spaces, data on the climates actually achieved in houses, throughout the year, have not been

widely reported.



Table 1. Results of linear models evaluating indoor home climate (temperature, vapour pressure) by outdoor home climate.

season d.f. variable estimate (s.e.) t value adj. R2

winter 159 temperature (8C) 0.063 (0.02) 2.88** 0.044

vapour pressure (hPa) 0.757 (0.03) 23.41*** 0.774

spring/autumn 218 temperature (8C) 0.246 (0.02) 14.13*** 0.476

vapour pressure (hPa) 5.862 (0.33) 23.44*** 0.715

summer 136 temperature (8C) 0.245 (0.03) 8.23*** 0.328

vapour pressure (hPa) 0.351 (0.05) 7.69*** 0.298

Significance levels **p , 0.01, ***p , 0.001.

10

indoor outdoor indoor

winter spring/autumn summer

outdoor indoor outdoor indoor outdoor

20

30

minimum temp mean temp maximum temp vapour pressure

Figure 1. Boxplots for the climatic variables air temperature (8C) and vapour pressure (hPa) by season (spring and autumn are averaged;
winter¼ purple, spring/autumn ¼ orange, summer ¼ green) and location. Minimum temp is the mean minimum air temperature, mean
temp is mean air temperature, maximum temp is the mean maximum air temperature and vapour pressure is the mean vapour pressure. The
indoor climate is from our study homes and outdoor climate values are from the 100 grid cells that are the most climatically similar to the
mean home indoor climate. The box plots display data range, quartiles and median with dots as outliers. Figure was generated with R
(version 3.3.2; http://www.R-project.org) package ggplot2 (version 2.2.0; http://CRAN.R-project.org/package=ggplot2).
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We also identified outdoor climates from around the world that are most climatically similar (e.g. in

terms of temperature and humidity, by season) to the indoor climate of the homes we studied. North

American homes were most similar in climate to the outdoor conditions of west central Kenya (C ¼
2.938). The mean maximum temperature (average of all seasons) in the North American homes was

25.358C compared with 25.068C for the conditions outdoors in west central Kenya. The mean vapour

pressure was 12.58 hPa for North American homes and was similar to the outdoor conditions in west

central Kenya (12.96 hPa).

When humans adjust the climates within their homes, it is unlikely that most are consciously

attempting to emulate the climatic conditions of some outdoor location in another country or

continent. Instead, they are almost certainly attempting to achieve climatic conditions that result in

thermal comfort. They do so to such an extent that indoor climate is no longer well correlated to

outdoor climate (table 1). Based purely on its indoor temperature and humidity, you would be

unlikely to discern whether a house from our dataset was in Wyoming or Mississippi. Of the two

climatic variables, we considered, indoor humidity was more strongly correlated with outdoor

conditions than was the case for temperature, but this correlation was weak. The extent to which

humans have decoupled indoor and outdoor climate is likely to be the most extreme in nature. Even

honeybee nests, for example, which are actively buffered from outdoor conditions, still vary in

response to outdoor conditions.

In general, mammals, including humans, have evolved the ability to regulate their body temperatures

via behaviour and autonomic responses. Human autonomic control has the capacity to maintain brain

and core temperature over a range of environmental conditions [48]. Moreover, humans acclimate

http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=ggplot2


Table 2. Results of climate dissimilarity analysis between the indoor climate of a North American home (n ¼ 37) and 67 420
global terrestrial grid cells. Cnearest is the minimum value of the climate dissimilarity index (C ) for that state. The country where
the centre (latitude and longitude) of the grid cell is located is listed as the nearest country. CTop 100 is the mean minimum
value of C (standard error) for the 100 most climatically similar global grid cells for that state, the corresponding country
represents the most frequently observed country from the 100 most climatically grid cells.

state Cnearest country (nearest) latitude longitude CTop 100 country (top 100)

Alabama 2.557 Kenya 1.75 35.25 3.181 (0.022) Ethiopia

Alaska 1.273 Namibia 13.75 219.75 1.879 (0.023) Namibia

Arizona 2.146 Namibia 222.75 15.75 2.547 (0.012) Australia

Arkansas 1.221 Ethiopia 7.75 35.25 1.79 (0.019) Ethiopia

California 1.263 Namibia 221.25 14.75 1.868 (0.019) Namibia

Connecticut 2.197 Namibia 222.25 15.25 2.625 (0.018) Angola

Delaware 0.770 Angola 213.75 16.25 1.272 (0.025) Angola

Florida 1.705 Ethiopia 3.75 38.75 2.339 (0.028) Ethiopia

Georgia 1.755 Ethiopia 9.75 35.25 2.317 (0.017) Ethiopia

Hawaii 0.561 Brazil 211.25 238.25 0.9 (0.014) Brazil

Illinois 2.648 Namibia 221.75 15.25 3.249 (0.017) Angola

Kansas 2.087 Kenya 0.75 35.75 2.64 (0.016) Ethiopia

Kentucky 2.163 Kenya 1.75 35.25 2.62 (0.017) Ethiopia

Louisiana 1.258 Kenya 21.25 38.25 1.658 (0.015) Ethiopia

Maryland 3.243 Ethiopia 9.75 35.25 3.759 (0.019) Ethiopia

Massachusetts 0.736 Angola 215.75 14.75 1.329 (0.023) Angola

Michigan 2.188 Namibia 222.75 15.25 2.742 (0.014) Namibia

Minnesota 3.079 Bermuda 32.25 264.75 3.562 (0.011) Australia

Missouri 3.580 Ethiopia 12.75 37.25 4.12 (0.017) Ethiopia

Nebraska 1.745 Angola 210.75 22.25 2.347 (0.019) Angola

Nevada 3.210 Namibia 221.75 15.75 3.945 (0.027) Namibia

New Hampshire 1.898 Namibia 221.25 14.75 2.457 (0.018) Namibia

New Mexico 2.487 Ethiopia 12.75 37.25 3.1 (0.019) Angola

North Carolina 1.519 Ethiopia 10.75 35.75 1.792 (0.009) Angola

North Dakota 2.970 Namibia 221.75 15.25 3.613 (0.018) Namibia

Oklahoma 2.820 Kenya 1.75 35.25 3.387 (0.019) Ethiopia

Oregon 0.387 Kenya 0.25 35.25 1.109 (0.023) Ethiopia

South Carolina 1.967 Ethiopia 4.25 39.25 2.511 (0.021) Ethiopia

South Dakota 2.721 Namibia 221.25 14.75 3.267 (0.018) Namibia

Tennessee 1.272 Namibia 222.25 15.25 2.08 (0.021) Angola

Utah 1.982 Namibia 221.25 14.75 2.565 (0.018) Namibia

Vermont 1.719 Mexico 25.25 2106.75 2.078 (0.012) Namibia

Virginia 1.658 Ethiopia 9.75 35.25 2.328 (0.018) Ethiopia

Washington 1.870 Kenya 1.25 35.75 2.498 (0.02) Ethiopia

West Virginia 1.561 Ethiopia 10.75 35.75 1.941 (0.012) Angola

Wisconsin 1.997 Namibia 221.75 14.75 2.538 (0.016) Angola

Wyoming 3.433 Namibia 222.75 15.75 4.119 (0.023) Namibia
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Figure 2. Map of the USA (not to scale). Each state represents one study home (n ¼ 37). State fill colour represents the country
(Angola, aquamarine; Australia, salmon; Brazil, light purple; Ethiopia, magenta; Namibia, green) that was identified as most frequent
from a subset of the 100 global grid cells with most similar climate to each study home. States not included in the analysis are
shown in white. Map was generated with R (version 3.3.2; http://www.R-project.org) packages ggplot2 (http://CRAN.R-project.org/
package=ggplot2), mapproj (version 1.2-4; https://cran.r-project.org/package=mapproj), rgdal (version 1.2-7; https://cran.r-project.
org/package=rgdal) and sp (version 1.2-4; https://cran.r-project.org/package=sp). State boundaries (5 m resolution) were obtained
from the US Census Bureau (https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html).

–50°

–100° 0° 100°

C

30

20

10
0°

50°

la
tit

ud
e

longitude

Figure 3. Map depicting the climate dissimilarity index (C ) between the mean indoor climate of the North American homes (n ¼ 37;
2013 – 2014) and the outdoor climate of terrestrial 0.58 global grid cells (n ¼ 67 420; 2012). Dissimilarity increases as C increases
(yellow to blue). Cells depicted in black are those grid cells with the climatic conditions most similar to the average North American
home in terms of temperature and humidity (n ¼ 100). Map was generated with R (version 3.3.2; http://www.R-project.org)
packages ggplot2 (version 2.2.0; http://CRAN.R-project.org/package=ggplot2), rgdal (version 1.2-7; https://cran.r-project.org/
package=rgdal), sp (version 1.2-4; https://cran.r-project.org/package=sp), and rworldmap (version 1.3-4; https://cran.r-project.org/
package=rworldmap), which uses Natural Earth data (version 1.4.0; http://www.naturalearthdata.com) for country borders.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:180695
7

relatively quickly to new climatic conditions [49] and the evolution of hypothalamic controlled body

temperatures, along with behavioural and cultural advances, may have allowed humans to expand

the range of climatic conditions of their niche. So why do humans expend such extraordinary expense

to maintain constant indoor climates [50] when such climates are not necessary for survival, especially

given the plasticity of human temperature acclimation (e.g. ama divers to endurance athletes)?

Probably, it is because these climates are comfortable.

In mammals, the perception of whether a climate is comfortable or not is an important driver of

climate seeking behaviour [51], as a comfortable climate produces conditions that allow an individual
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Table 3. Climate-related values for select primate species. Variables include animal husbandry recommendations for temperature
(THusbandry) and relative humidity (RHHusbandry), natural habitat temperature (THabitat), normal adult body temperature (TBody) and
thermoneutral zone (TNZ). THusbandry and RHHusbandry values, [55]. THabitat values, Primate Info Network, Wisconsin National
Primate Research Center, University of Wisconsin – Madison, accessed 10 April 2017; http://pin.primate.wisc.edu). TBody and TNZ
values, [23,56 – 60].

species THusbandry(8C) RHHusbandry (%) THabitat (8C) TBody (8C) TNZ (8C)

Gorilla beringei 18.3 – 29.4 30 – 70 3.9 – 14.5 unknown unknown

Gorilla gorilla 18.3 – 29.4 30 – 70 23 35.5 unknown

Homo sapiens n.a. n.a. n.a. 37 25 – 30

Pan paniscus 18 – 22 50 – 60 20 – 30 unknown unknown

Pan troglodytes 15.6 – 29.4 30 – 70 18.5 – 30 37.25 17 – 29

Pongo abelii 18 – 28 30 – 70 17 – 34.2 unknown unknown

Pongo pygmaeus 18 – 28 30 – 70 18 – 37.5 37 unknown
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to remain within their thermoneutral zone (TNZ). The TNZ is the range of environmental conditions

where, for a given animal, heat loss equals gain and core body temperature is maintained [52]. When

an individual is outside of this range of conditions, the individual may adjust climatic conditions

behaviourally, physiologically or psychologically to adapt to the climatic conditions and ultimately

perceive thermal comfort [51,53]. These TNZs are mutable and may change with an individual’s

climatic history or habituation of an indoor space (i.e. the Adaptive Comfort Model), but the methods

to achieve thermal comfort remain the same [53,54]. Interestingly, the range of the mean indoor

temperature recorded by citizen scientists in their homes and the 100 most climatically similar global

grid cells (figure 3) largely fall within the TNZs (24–308C) for primates including humans [23]. A

comparison of climate-related physiological parameters between humans and a selection of non-

human primates is included in table 3. We hypothesize that indoor climates largely correspond with

our TNZ because our ancestors evolved thermal preferences that led them to favour (and ultimately

build) these climates.

Perhaps not surprising, in light of the TNZ hypothesis, the temperature people prefer overlaps with

much of the geographical area in which key events in hominid evolution and, for that matter, early

civilization occurred [48]. We hypothesize that natural selection favoured human preferences and

thermal traits that allowed human ancestors to live in those climates. However, as humans moved out

of those environments they faced new climates. Strong evidence suggests that the selective pressures

imparted by climate has altered human genomes [24,61,62]. In addition, new climates led to cultural

responses such as the use of fire for heat [63], clothing [26] and shelter [64], all of which modified the

climate to which individuals were exposed. We argue that modern temperatures in homes are a

continuation of this same effort, but the technological ability of humans to modify climate has led to

the extreme scenario, where fossil fuels are cheap, and (North American) indoor climates closely align

with TNZs. Moreover, air-conditioned buildings with closed ventilation combined with changing

indoor climatic expectations have also led to narrower ranges of human thermal comfort [30,53].

However, many questions remain. For example, do wealthy homeowners (or striving homeowners)

keep their homes colder than is preferred in hot places to display wealth (and vice versa)? Do genetic

backgrounds of homeowners influence preferred climates? How do these climates affect our health

and well-being? For example, indoor climates are less variable [65] than outdoor climates and this

reduced variability may lead to health issues such as obesity or diabetes [66,67].

Our results also offer a hypothesis about the likely origin of human home-associated species, as

indoor climates probably favour certain lineages, those pre-adapted to indoor climates. We

hypothesize that the assemblage of species that colonize our homes are likely to be those with thermal

preferences/tolerances similar to us, which is to say species from relatively dry, relatively warm

climates, including north and eastern Africa, but also much of the Middle East. Moreover, predictions

can be made about the communities of home associates through time and space, as climate, home

technologies and fortunes change. We know that climate preferences in homes differ among regions

[25,29], and the USA is probably an extreme case, where indoor climates most reflect resource

availability and culture, rather than economic and environmental costs.

http://pin.primate.wisc.edu
http://pin.primate.wisc.edu
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Our characterization of the indoor climate of North American homes and the identification of the

outdoor climates most similar to these homes opens a new line of inquiry. Why do we prefer these

climatic conditions? Do the climates of modern houses reflect our ancestral climates? When and where

did we evolve these modern climate preferences, and what are the contributions of genetic and

cultural evolution to these preferences? Interestingly, the majority of 100 most climatically similar

outdoor locations were located in the hot and seasonably dry northeastern Africa, a region rich in

hominid fossils and evolution [68].

As a first step, we presented a simple comparison between the indoor climate of these North

American homes and the climatic conditions experienced by some non-human primates (i.e. great

apes). We found that climatic conditions generally overlapped. However, no a priori predictions seem

to exist for which global climate we might favour in our homes, and future work should test the

simplest one, namely that we tend to attempt to recreate the conditions from which we evolved,

before we had the ability to make homes, the ones to which our physiologies are adapted.
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