185 research outputs found
First experimental evidence of one-dimensional plasma modes in superconducting thin wires
We have studied niobium superconducting thin wires deposited onto a
SrTiO substrate. By measuring the reflection coefficient of the wires,
resonances are observed in the superconducting state in the 130 MHz to 4 GHz
range. They are interpreted as standing wave resonances of one-dimensional
plasma modes propagating along the superconducting wire. The experimental
dispersion law, versus , presents a linear dependence over the
entire wave vector range. The modes are softened as the temperature increases
close the superconducting transition temperature. Very good agreement are
observed between our data and the dispersion relation predicted by Kulik and
Mooij and Sch\"on.Comment: Submitted to Physical review Letter
Variability of polycyclic aromatic hydrocarbons and their oxidative derivatives in wintertime Beijing, China
Ambient particulate matter (PM) can contain a mix of different toxic species derived from a wide variety of sources. This study quantifies the diurnal variation and nocturnal abundance of 16 polycyclic aromatic hydrocarbons (PAHs), 10 oxygenated PAHs (OPAHs) and 9 nitrated PAHs (NPAHs) in ambient PM in central Beijing during winter. Target compounds were identified and quantified using gas chromatography-time-of-flight mass spectrometry (GC-Q-ToF-MS). The total concentration of PAHs varied between 18 and 297 ngm-3 over 3 h daytime filter samples and from 23 to 165 ngm-3 in 15 h night-time samples. The total concentrations of PAHs over 24 h varied between 37 and 180 ngm-3 (mean: 97±43 ngm-3). The total daytime concentrations during high particulate loading conditions for PAHs, OPAHs and NPAHs were 224, 54 and 2.3 ngm-3, respectively. The most abundant PAHs were fluoranthene (33 ngm-3), chrysene (27 ngm-3), pyrene (27 ngm-3), benzo[a]pyrene (27 ngm-3), benzo[b]fluoranthene (25 ngm-3), benzo[a]anthracene (20 ngm-3) and phenanthrene (18 ngm-3). The most abundant OPAHs were 9,10-anthraquinone (18 ngm-3), 1,8-naphthalic anhydride (14 ngm-3) and 9-fluorenone (12 ngm-3), and the three most abundant NPAHs were 9-nitroanthracene (0.84 ngm-3), 3-nitrofluoranthene (0.78 ngm-3) and 3-nitrodibenzofuran (0.45 ngm-3). Σ PAHs and Σ OPAHs showed a strong positive correlation with the gas-phase abundance of NO, CO, SO2 and HONO, indicating that PAHs and OPAHs can be associated with both local and regional emissions. Diagnostic ratios suggested emissions from traffic road and coal combustion were the predominant sources of PAHs in Beijing and also revealed the main source of NPAHs to be secondary photochemical formation rather than primary emissions. PM2.5 and NPAHs showed a strong correlation with gas-phase HONO. 9- Nitroanthracene appeared to undergo a photodegradation during the daytime and showed a strong positive correlation with ambient HONO (R D 0:90, P <0:001). The lifetime excess lung cancer risk for those species that have available toxicological data (16 PAHs, 1 OPAH and 6 NPAHs) was calculated to be in the range 10-5 to 10-3 (risk per million people ranges from 26 to 2053 cases per year)
The optical response of Ba_{1-x}K_xBiO_3: Evidence for an unusual coupling mechanism of superconductivity?
We have analysed optical reflectivity data for Ba_{1-x}K_xBiO_3 in the
far-infrared region using Migdal-Eliashberg theory and found it inconsistent
with standard electron-phonon coupling: Whereas the superconducting state data
could be explained using moderate coupling, \lambda=0.7, the normal state
properties indicate \lambda \le 0.2. We have found that such behaviour could be
understood using a simple model consisting of weak standard electron-phonon
coupling plus weak coupling to an unspecified high energy excitation near 0.4
eV. This model is found to be in general agreement with the reflectivity data,
except for the predicted superconducting gap size. The additional high energy
excitation suggests that the dominant coupling mechanism in Ba_{1-x}K_xBiO_3 is
not standard electron-phonon.Comment: 5 pages REVTex, 5 figures, 32 refs, accepted for publication in Phys.
Rev.
Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells.
The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole "HOX transcriptome" of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity
Sources of non-methane hydrocarbons in surface air in Delhi, India
Rapid economic growth and development have exacerbated air quality problems across India, driven by many poorly understood pollution sources and understanding their relative importance remains critical to characterising the key drivers of air pollution. A comprehensive suite of measurements of 90 non-methane hydrocarbons (NMHCs) (C2–C14), including 12 speciated monoterpenes and higher molecular weight monoaromatics, were made at an urban site in Old Delhi during the pre-monsoon (28-May to 05-Jun 2018) and post-monsoon (11 to 27-Oct 2018) seasons using dual-channel gas chromatography (DC-GC-FID) and two-dimensional gas chromatography (GC×GC-FID). Significantly higher mixing ratios of NMHCs were measured during the post-monsoon campaign, with a mean night-time enhancement of around 6. Like with NOx and CO, strong diurnal profiles were observed for all NMHCs, except isoprene, with very high NMHC mixing ratios between 35–1485 ppbv. The sum of mixing ratios of benzene, toluene, ethylbenzene and xylenes (BTEX) routinely exceeded 100 ppbv at night during the post-monsoon period, with a maximum measured mixing ratio of monoaromatic species of 370 ppbv. The mixing ratio of highly reactive monoterpenes peaked at around 6 ppbv in the post-monsoon campaign and correlated strongly with anthropogenic NMHCs, suggesting a strong non-biogenic source in Delhi. A detailed source apportionment study was conducted which included regression analysis to CO, acetylene and other NMHCs, hierarchical cluster analysis, EPA UNMIX 6.0, principal component analysis/absolute principal component scores (PCA/APCS) and comparison with NMHC ratios (benzene/toluene and i-/n-pentane) in ambient samples to liquid and solid fuels. These analyses suggested the primary source of anthropogenic NMHCs in Delhi was from traffic emissions (petrol and diesel), with average mixing ratio contributions from Unmix and PCA/APCS models of 38% from petrol, 14% from diesel and 32% from liquified petroleum gas (LPG) with a smaller contribution (16%) from solid fuel combustion. Detailed consideration of the underlying meteorology during the campaigns showed that the extreme night-time mixing ratios of NMHCs during the post-monsoon campaign were the result of emissions into a very shallow and stagnant boundary layer. The results of this study suggest that despite widespread open burning in India, traffic-related petrol and diesel emissions remain the key drivers of gas-phase urban air pollution in Delhi
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9})  eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
The Majorana Project
Building a \BBz experiment with the ability to probe neutrino mass in the
inverted hierarchy region requires the combination of a large detector mass
sensitive to \BBz, on the order of 1-tonne, and unprecedented background
levels, on the order of or less than 1 count per year in the \BBz signal
region. The MAJORANA Collaboration proposes a design based on using high-purity
enriched Ge-76 crystals deployed in ultra-low background electroformed Cu
cryostats and using modern analysis techniques that should be capable of
reaching the required sensitivity while also being scalable to a 1-tonne size.
To demonstrate feasibility, the collaboration plans to construct a prototype
system, the MAJORANA DEMONSTRATOR, consisting of 30 kg of 86% enriched \Ge-76
detectors and 30 kg of natural or isotope-76-depleted Ge detectors. We plan to
deploy and evaluate two different Ge detector technologies, one based on a
p-type configuration and the other on n-type.Comment: paper submitted for the 2008 Carolina International Symposium on
Neutrino Physic
Electron Antineutrino Search at the Sudbury Neutrino Observatory
Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have
been set based on the \nuebar charged-current reaction on deuterium. The
reaction produces a positron and two neutrons in coincidence. This distinctive
signature allows a search with very low background for \nuebar's from the Sun
and other potential sources. Both differential and integral limits on the
\nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an
energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit
on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found
to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds
to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2}
s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3
-- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range
from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in
which only the two neutrons are detected. Assuming a \nuebar spectrum for the
neutron induced fission of naturally occurring elements, a flux limit of
Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.
Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory
Solar neutrinos from the decay of B have been detected at the Sudbury
Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium
and by the elastic scattering (ES) of electrons. The CC reaction is sensitive
exclusively to nu_e's, while the ES reaction also has a small sensitivity to
nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC
reaction rate is
\phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6
/cm^2 s.
Assuming no flavor transformation, the flux inferred from the ES reaction
rate is
\phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s.
Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision
value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that
there is a non-electron flavor active neutrino component in the solar flux. The
total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x
10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter
- …