28 research outputs found

    Proton spin-lattice relaxation and methyl group rotation

    Get PDF
    Proton spin-lattice relaxation times have been measured at 16, 31, and 59 MHz in 4-methyl-2,6-ditertiarybutyl phenol between 80 K and its melting point, 340 K. The variation of T1 with temperature shows too distinct minima. The lower-temperature minimum has been analyzed in terms of relaxation by reorientation of four of the six t-butyl methyl groups with an average apparent activation energy of about 2.4 kcal mole−1 (104 meV molecule−1). The higher-temperature minimum has been analyzed in terms of relaxation by reorientation of the t-butyl groups about their C3 axes with four of the six t-butyl methyl groups reorienting very rapidly, and the remaining two reorienting with correlation time similar to that of the t-butyl group. The activation energy for the higher-temperature minimum is 5.76 kcal mole−1 (250 meV molecule−1). Steric potential calculations are used to add weight to these assignments, and a number of peculiarities displayed by the lower-temperature minimum are discussed

    Proton spin-lattice relaxation and methyl group rotation

    Get PDF
    Proton spin-lattice relaxation times have been measured at 16, 31, and 59 MHz in 4-methyl-2,6-ditertiarybutyl phenol between 80 K and its melting point, 340 K. The variation of T1 with temperature shows too distinct minima. The lower-temperature minimum has been analyzed in terms of relaxation by reorientation of four of the six t-butyl methyl groups with an average apparent activation energy of about 2.4 kcal mole−1 (104 meV molecule−1). The higher-temperature minimum has been analyzed in terms of relaxation by reorientation of the t-butyl groups about their C3 axes with four of the six t-butyl methyl groups reorienting very rapidly, and the remaining two reorienting with correlation time similar to that of the t-butyl group. The activation energy for the higher-temperature minimum is 5.76 kcal mole−1 (250 meV molecule−1). Steric potential calculations are used to add weight to these assignments, and a number of peculiarities displayed by the lower-temperature minimum are discussed

    Application of time–stress superposition to viscoelastic behavior of polyamide 6,6 fiber and its “true” elastic modulus

    Get PDF
    The viscoelastic behavior of semi-crystalline polyamide 6,6 fiber is exploited in viscoelastically prestressed polymeric matrix composites. To understand better the underlying prestress mechanisms, strain–time performance of the fiber material is investigated in this work, under high creep stress values (330–665 MPa). A latch-based Weibull model enables prediction of the “true” elastic modulus through instantaneous deformation from the creep-recovery data, giving 4.6 ± 0.4 GPa. The fiber shows approximate linear viscoelastic characteristics, so that the time–stress superposition principle (TSSP) can be implemented, with a linear relationship between the stress shift factor and applied stress. The resulting master creep curve enables creep behavior at 330 MPa to be predicted over a large timescale, thus creep at 590 MPa for 24 h would be equivalent to a 330 MPa creep stress for ∌5200 years. Similarly, the TSSP is applied to the resulting recovery data, to obtain a master recovery curve. This is equivalent to load removal in the master creep curve, in which the yarns would have been subjected to 330 MPa creep stress for ∌4.56 × 107 h. Since our work involves high stress values, the findings may be of interest to those involved with long-term load-bearing applications using polyamide materials

    A method for measuring the dielectric constant of liquids

    No full text
    [No abstract submitted]Science, Faculty ofChemistry, Department ofGraduat

    Gyroscopic Apparatus for Steadying Ships

    No full text

    Rave - ÅteruppstĂ„nden Drogromantik eller Danskultur?

    No full text
    Denna uppsats undersöker ravekulturens nuvarande tillstĂ„nd i Stockholm. Ravekulturens primĂ€ra produkt – den elektroniska musiken (EDM) – som innefattar mĂ„nga olika typer av musikstilar, bland annat techno- och housemusik, har blivit ett allt vanligare inslag inom de reglerade klubb- och festivalverksamheterna. Sedan ravekulturens storhetstid pĂ„ 1990-talet har rave- och klubbkulturen utvecklats till ett internationellt, om inte globalt, fenomen med demografiska skillnader i förhĂ„llande till narkotikabruk, musik- och danstraditioner. Genom Durkheims ritualteori, tillsammans med Collins teori om gruppinteraktion nĂ€rmas ravekulturen och dess relation till narkotikabruk. Respektive teoretikers begrepp; collective effervescense och emotionell energi, anvĂ€nds som verktyg för att erhĂ„lla en större förstĂ„else för ravekulturens utveckling och nuvarande lĂ€ge. För skapa en förstĂ„else av ravekulturens utveckling och nuvarande tillstĂ„nd har ett antal nyckelaktörer identifierats, vilka alla besitter stor erfarenhet av ravekulturen. Deras erfarenheter lyfts fram genom semistrukturerade expertintervjuer. Beröringspunkter intervjuerna emellan, samt till teorin har lyfts fram som teman till analysen. Intervjudeltagarna beskriver en ravekultur som i allra högsta grad Ă€r levande som har tydliga kopplingar till narkotikabruk, med ecstasy som den primĂ€ra ravedrogen. Den emotionella energin som skapas pĂ„ ravens dansgolv lyfts fram som den fundamentala dragningskraft till rave, vilket binder dess deltagare samman genom att etablera ett kollektivt fokus pĂ„ dansen. Narkotikabruket anvĂ€nds som en förstĂ€rkare för de gemensamma kĂ€nslorna, och upprĂ€tthĂ„ller dansen genom hela nĂ€tter. Ravets sociala regler stĂ€lls upp för att enskilda deltagare inte ska kunna bryta det kollektiva fokuset genom att ta för stort individuellt utrymme i den sociala sfĂ€ren. Detta fokus kan ocksĂ„ förklara en DJ eller en narkotikalangares sĂ€rstĂ€llning inom kulturen eftersom deras roller förstĂ€rker fokus genom musiken eller försĂ€ljning av narkotika. Det att förklara ravekulturens bestĂ„ndsdelar utifrĂ„n ravets emotionella energi
    corecore