2,726 research outputs found

    Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour : a systematic review

    Get PDF
    Background: Health and fitness applications (apps) have gained popularity in interventions to improve diet, physical activity and sedentary behaviours but their efficacy is unclear. This systematic review examined the efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour in children and adults. Methods: Systematic literature searches were conducted in five databases to identify papers published between 2006 and 2016. Studies were included if they used a smartphone app in an intervention to improve diet, physical activity and/or sedentary behaviour for prevention. Interventions could be stand-alone interventions using an app only, or multi-component interventions including an app as one of several intervention components. Outcomes measured were changes in the health behaviours and related health outcomes (i.e., fitness, body weight, blood pressure, glucose, cholesterol, quality of life). Study inclusion and methodological quality were independently assessed by two reviewers. Results: Twenty-seven studies were included, most were randomised controlled trials (n = 19; 70%). Twenty-three studies targeted adults (17 showed significant health improvements) and four studies targeted children (two demonstrated significant health improvements). Twenty-one studies targeted physical activity (14 showed significant health improvements), 13 studies targeted diet (seven showed significant health improvements) and five studies targeted sedentary behaviour (two showed significant health improvements). More studies (n = 12; 63%) of those reporting significant effects detected between-group improvements in the health behaviour or related health outcomes, whilst fewer studies (n = 8; 42%) reported significant within-group improvements. A larger proportion of multi-component interventions (8 out of 13; 62%) showed significant between-group improvements compared to stand-alone app interventions (5 out of 14; 36%). Eleven studies reported app usage statistics, and three of them demonstrated that higher app usage was associated with improved health outcomes. Conclusions: This review provided modest evidence that app-based interventions to improve diet, physical activity and sedentary behaviours can be effective. Multi-component interventions appear to be more effective than standalone app interventions, however, this remains to be confirmed in controlled trials. Future research is needed on the optimal number and combination of app features, behaviour change techniques, and level of participant contact needed to maximise user engagement and intervention efficacy

    Review of \u3ci\u3eEnding Homelessness:Why We Haven’t, How We Can\u3c/i\u3e. Donald W. Burnes and David L. DiLeo. Reviewed Sondra J. Fogel, Stephanie Duncan, and Heather Larkin.

    Get PDF
    Review of: Donald W. Burnes and David L. DiLeo. Ending Homelessness: Why We Haven’t, How We Can. Lynne Rienner Publishers, Inc. (2016), 314 pages, $39.95 (hardcover)

    Simulating the coronal evolution of bipolar active regions to investigate the formation of flux ropes

    Get PDF
    Funding: S.L.Y. would like to acknowledge STFC for support via the Consolidated Grant SMC1/YST025. D.H.M. would like to thank STFC, the Leverhulme Trust and the ERC under the Synergy Grant: The Whole Sun, grant agreement no. 810218 for financial support. L.M.G. is thankful to the Royal Society for a University Research Fellowship and the Leverhulme Trust.The coronal magnetic field evolution of 20 bipolar active regions (ARs) is simulated from their emergence to decay using the time-dependent nonlinear force-free field method of Mackay, Green, and van Ballegooijen (Astrophys. J. 729, 97, 2011). A time sequence of cleaned photospheric line-of-sight magnetograms, which covers the entire evolution of each AR, is used to drive the simulation. A comparison of the simulated coronal magnetic field with the 171 and 193 Å observations obtained by the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), is made for each AR by manual inspection. The results show that it is possible to reproduce the evolution of the main coronal features such as small- and large-scale coronal loops, filaments and sheared structures for 80% of the ARs. Varying the boundary and initial conditions, along with the addition of physical effects such as Ohmic diffusion, hyperdiffusion and a horizontal magnetic field injection at the photosphere, improves the match between the observations and simulated coronal evolution by 20%. The simulations were able to reproduce the build-up to eruption for 50% of the observed eruptions associated with the ARs. The mean unsigned time difference between the eruptions occurring in the observations compared to the time of eruption onset in the simulations was found to be ≈5 hrs. The simulations were particularly successful in capturing the build-up to eruption for all four eruptions that originated from the internal polarity inversion line of the ARs. The technique was less successful in reproducing the onset of eruptions that originated from the periphery of ARs and large-scale coronal structures. For these cases global, rather than local, nonlinear force-free field models must be used. While the technique has shown some success, eruptions that occur in quick succession are difficult to reproduce by this method and future iterations of the model need to address this.Publisher PDFPeer reviewe

    Bridging the communication divide: CMC and deaf individuals’ literacy skills

    Get PDF

    Evaluating the South Carolina Budget and Control Board Office of Human Resources Associated Public Manager (APM) Program

    Get PDF
    The Associated Public Manager Program is one of three professional certification programs offered to South Carolina state employees. This paper evaluates that program,

    Taxonomic Features and Comparison of the Gut Microbiome from Two Edible Fungus-Farming Termites (Macrotermes falciger, M. natalensis) Harvested in the Vhembe District of Limpopo, South Africa

    Get PDF
    Background Termites are an important food resource for many human populations around the world, and are a good supply of nutrients. The fungus-farming ‘higher’ termite members of Macrotermitinae are also consumed by modern great apes and are implicated as critical dietary resources for early hominins. While the chemical nutritional composition of edible termites is well known, their microbiomes are unexplored in the context of human health. Here we sequenced the V4 region of the 16S rRNA gene of gut microbiota extracted from the whole intestinal tract of two Macrotermes sp. soldiers collected from the Limpopo region of South Africa. Results Major and minor soldier subcastes of M. falciger exhibit consistent differences in taxonomic representation, and are variable in microbial presence and abundance patterns when compared to another edible but less preferred species, M. natalensis. Subcaste differences include alternate patterns in sulfate-reducing bacteria and methanogenic Euryarchaeota abundance, and differences in abundance between Alistipes and Ruminococcaceae. M. falciger minor soldiers and M. natalensissoldiers have similar microbial profiles, likely from close proximity to the termite worker castes, particularly during foraging and fungus garden cultivation. Compared with previously published termite and cockroach gut microbiome data, the taxonomic representation was generally split between termites that directly digest lignocellulose and humic substrates and those that consume a more distilled form of nutrition as with the omnivorous cockroaches and fungus-farming termites. Lastly, to determine if edible termites may point to a shared reservoir for rare bacterial taxa found in the gut microbiome of humans, we focused on the genus Treponema. The majority of Treponemasequences from edible termite gut microbiota most closely relate to species recovered from other termites or from environmental samples, except for one novel OTU strain, which clustered separately with Treponema found in hunter-gatherer human groups. Conclusions Macrotermes consumed by humans display special gut microbial arrangements that are atypical for a lignocellulose digesting invertebrate, but are instead suited to the simplified nutrition in the fungus-farmer diet. Our work brings to light the particular termite microbiome features that should be explored further as avenues in human health, agricultural sustainability, and evolutionary research

    Determining the source and eruption dynamics of a stealth CME using NLFFF modelling and MHD simulations

    Get PDF
    Funding: S.L.Y. would like to acknowledge STFC for support via the consolidated grant SMC1/YST037 and alsoNERC for funding via the SWIMMR Aviation Risk Modelling (SWARM) Project, grant number NE/V002899/1. P.P.would like to thank the ERC for support via grant No. 647214. D.H.M. would like to thank the STFC for support via consolidated grant ST/N000609/1 and, the Leverhulme trust, and the ERC under the Synergy Grant: The Whole Sun (grant agreement no. 810218) for financial support. P.P. and D.H.M. would like to thank STFC for IAA funding under grant number SMC1-XAS012. L.A.U. was supported by the NSF Atmospheric and Geospace Sciences Postdoctoral Research Fellowship Program (Award AGS-1624438).Context. Coronal mass ejections (CMEs) that exhibit weak or no eruption signatures in the low corona, known as stealth CMEs, are problematic as upon arrival at Earth they can lead to geomagnetic disturbances that were not predicted by space weather forecasters. Aims. We investigate the origin and eruption of a stealth event that occurred on 2015 January 3 that was responsible for a strong geomagnetic storm upon its arrival at Earth. Methods. To simulate the coronal magnetic field and plasma parameters of the eruption we use a coupled approach. This approach combines an evolutionary nonlinear force-free field model of the global corona with a MHD simulation. Results. The combined simulation approach accurately reproduces the stealth event and suggests that sympathetic eruptions occur. In the combined simulation we found that three flux ropes form and then erupt. The first two flux ropes, which are connected to a large AR complex behind the east limb, erupt first producing two near-simultaneous CMEs. These CMEs are closely followed by a third, weaker flux rope eruption in the simulation that originated between the periphery of AR 12252 and the southern polar coronal hole. The third eruption coincides with a faint coronal dimming, which appears in the SDO/AIA 211 Å observations, that is attributed as the source responsible for the stealth event and later the geomagnetic disturbance at 1 AU. The incorrect interpretation of the stealth event being linked to the occurrence of a single partial halo CME observed by LASCO/C2 is mainly due to the lack of STEREO observations being available at the time of the CMEs. The simulation also shows that the LASCO CME is not a single event but rather two near-simultaneous CMEs. Conclusions. These results show the significance of the coupled data-driven simulation approach in interpreting the eruption and that an operational L5 mission is crucial for space weather forecastingPostprintPeer reviewe

    The Quest for the Holy Grail: Too Many ERM Systems Are Not Enough!

    Get PDF
    Combining punctual statistical data compilation, access to real-time order and payment information, and harmonious workflow and reporting tools in one place has long been the Holy Grail for libraries seeking a reliable means for tracking costly electronic resources. This is the tale of two academic libraries that have adopted very different types of electronic resource management systems (ERMS) to attain these goals. This proceeding will provide complementary case studies of the implementation process at Binghamton University where two commercial ERM systems are used, and at The University of Texas at Tyler where an open source ERM is utilized
    • 

    corecore