4,848 research outputs found

    Hilbert-Post completeness for the state and the exception effects

    Get PDF
    In this paper, we present a novel framework for studying the syntactic completeness of computational effects and we apply it to the exception effect. When applied to the states effect, our framework can be seen as a generalization of Pretnar's work on this subject. We first introduce a relative notion of Hilbert-Post completeness, well-suited to the composition of effects. Then we prove that the exception effect is relatively Hilbert-Post complete, as well as the "core" language which may be used for implementing it; these proofs have been formalized and checked with the proof assistant Coq.Comment: Siegfried Rump (Hamburg University of Technology), Chee Yap (Courant Institute, NYU). Sixth International Conference on Mathematical Aspects of Computer and Information Sciences , Nov 2015, Berlin, Germany. 2015, LNC

    A review of mathematical functions for the analysis of growth in poultry

    Get PDF
    Poultry industries face various decisions in the production cycle that affect the profitability of an operation. Predictions of growth when the birds are ready for sale are important factors that contribute to the economy of poultry operations. Mathematical functions called ‘growth functions’ have been used to relate body weight (W) to age or cumulative feed intake. These can also be used as response functions to predict daily energy and protein dietary requirements for maintenance and growth (France et al., 1989). When describing growth versus age in poultry, a fixed point of inflexion can be a limitation with equations such as the Gompertz and logistic. Inflexion points vary depending on age, sex, breed and type of animal, so equations such as the Richards and López are generally recommended. For describing retention rate against daily intake, which generally does not exhibit an inflexion point, the monomolecular would appear the function of choice

    Observation of correlations up to the micrometer scale in sliding charge-density waves

    Full text link
    High-resolution coherent x-ray diffraction experiment has been performed on the charge density wave (CDW) system K0.3_{0.3}MoO3_3. The 2kF2k_F satellite reflection associated with the CDW has been measured with respect to external dc currents. In the sliding regime, the 2kF2k_F satellite reflection displays secondary satellites along the chain axis which corresponds to correlations up to the micrometer scale. This super long range order is 1500 times larger than the CDW period itself. This new type of electronic correlation seems inherent to the collective dynamics of electrons in charge density wave systems. Several scenarios are discussed.Comment: 4 pages, 3 figures Typos added, references remove

    A survey of young, nearby, and dusty stars to understand the formation of wide-orbit giant planets

    Full text link
    Direct imaging has confirmed the existence of substellar companions on wide orbits. To understand the formation and evolution mechanisms of these companions, the full population properties must be characterized. We aim at detecting giant planet and/or brown dwarf companions around young, nearby, and dusty stars. Our goal is also to provide statistics on the population of giant planets at wide-orbits and discuss planet formation models. We report a deep survey of 59 stars, members of young stellar associations. The observations were conducted with VLT/NaCo at L'-band (3.8 micron). We used angular differential imaging to reach optimal detection performance. A statistical analysis of about 60 % of the young and southern A-F stars closer than 65 pc allows us to derive the fraction of giant planets on wide orbits. We use gravitational instability models and planet population synthesis models following the core-accretion scenario to discuss the occurrence of these companions. We resolve and characterize new visual binaries and do not detect any new substellar companion. The survey's median detection performance reaches contrasts of 10 mag at 0.5as and 11.5 mag at 1as. We find the occurrence of planets to be between 10.8-24.8 % at 68 % confidence level assuming a uniform distribution of planets in the interval 1-13 Mj and 1-1000 AU. Considering the predictions of formation models, we set important constraints on the occurrence of massive planets and brown dwarf companions that would have formed by GI. We show that this mechanism favors the formation of rather massive clump (Mclump > 30 Mj) at wide (a > 40 AU) orbits which might evolve dynamically and/or fragment. For the population of close-in giant planets that would have formed by CA, our survey marginally explore physical separations (<20 AU) and cannot constrain this population

    Compliance error compensation in robotic-based milling

    Get PDF
    The paper deals with the problem of compliance errors compensation in robotic-based milling. Contrary to previous works that assume that the forces/torques generated by the manufacturing process are constant, the interaction between the milling tool and the workpiece is modeled in details. It takes into account the tool geometry, the number of teeth, the feed rate, the spindle rotation speed and the properties of the material to be processed. Due to high level of the disturbing forces/torques, the developed compensation technique is based on the non-linear stiffness model that allows us to modify the target trajectory taking into account nonlinearities and to avoid the chattering effect. Illustrative example is presented that deals with robotic-based milling of aluminum alloy

    Deep imaging survey of young, nearby austral stars: VLT/NACO near-infrared Lyot-coronographic observations

    Get PDF
    Context. High contrast and high angular resolution imaging is the optimal search technique for substellar companions to nearby stars at physical separations larger than typically 10 AU. Two distinct populations of substellar companions, brown dwarfs and planets, can be probed and characterized. As a result, fossile traces of processes of formation and evolution can be revealed by physical and orbital properties, both for individual systems and as an ensemble. Aims. Since November 2002, we have conducted a large, deep imaging, survey of young, nearby associations of the southern hemisphere. Our goal is detection and characterization of substellar companions with projected separations in the range 10–500 AU. We have observed a sample of 88 stars, primarily G to M dwarfs, younger than 100 Myr, and within 100 pc of Earth. Methods. The VLT/NACO adaptive optics instrument of the ESO Paranal Observatory was used to explore the faint circumstellar environment between typically 0.1 and 10". Diffraction-limited observations in H and K_s-band combined with Lyot-coronagraphy enabled us to reach primary star-companion brightness ratios as small as 10^(-6). The existence of planetary mass companions could therefore be probed. We used a standardized observing sequence to precisely measure the position and flux of all detected sources relative to their visual primary star. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects. Results. We report the discovery of 17 new close (0.1–5.0") multiple systems. HIP 108195 AB and C (F1 III-M6), HIP 84642 AB (a~14 AU, K0-M5) and TWA22 AB (a~1.8 AU; M6-M6) are confirmed comoving systems. TWA22 AB is likely to be a rare astrometric calibrator that can be used to test evolutionary model predictions. Among our complete sample, a total of 65 targets were observed with deep coronagraphic imaging. About 240 faint companion candidates were detected around 36 stars. Follow-up observations with VLT or HST for 83% of these stars enabled us to identify a large fraction of background contaminants. Our latest results that pertain to the substellar companions to GSC 08047-00232, AB Pic and 2M1207 (confirmed during this survey and published earlier), are reviewed. Finally, a statistical analysis of our complete set of coronagraphic detection limits enables us to place constraints on the physical and orbital properties of giant planets between typically 20 and 150 AU

    Parallel computation of echelon forms

    Get PDF
    International audienceWe propose efficient parallel algorithms and implementations on shared memory architectures of LU factorization over a finite field. Compared to the corresponding numerical routines, we have identified three main difficulties specific to linear algebra over finite fields. First, the arithmetic complexity could be dominated by modular reductions. Therefore, it is mandatory to delay as much as possible these reductions while mixing fine-grain parallelizations of tiled iterative and recursive algorithms. Second, fast linear algebra variants, e.g., using Strassen-Winograd algorithm, never suffer from instability and can thus be widely used in cascade with the classical algorithms. There, trade-offs are to be made between size of blocks well suited to those fast variants or to load and communication balancing. Third, many applications over finite fields require the rank profile of the matrix (quite often rank deficient) rather than the solution to a linear system. It is thus important to design parallel algorithms that preserve and compute this rank profile. Moreover, as the rank profile is only discovered during the algorithm, block size has then to be dynamic. We propose and compare several block decomposition: tile iterative with left-looking, right-looking and Crout variants, slab and tile recursive. Experiments demonstrate that the tile recursive variant performs better and matches the performance of reference numerical software when no rank deficiency occur. Furthermore, even in the most heterogeneous case, namely when all pivot blocks are rank deficient, we show that it is possbile to maintain a high efficiency
    corecore