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Poultry industries face various decisions in the production cycle that affect the
profitability of an operation. Predictions of growth when the birds are ready for
sale are important factors that contribute to the economy of poultry operations.
Mathematical functions called ‘growth functions’ have been used to relate body
weight (W) to age or cumulative feed intake. These can also be used as response
functions to predict daily energy and protein dietary requirements for maintenance
and growth (France et al., 1989). When describing growth versus age in poultry, a
fixed point of inflexion can be a limitation with equations such as the Gompertz and
logistic. Inflexion points vary depending on age, sex, breed and type of animal, so
equations such as the Richards and López are generally recommended. For
describing retention rate against daily intake, which generally does not exhibit an
inflexion point, the monomolecular would appear the function of choice.
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Introduction

Poultry industries face various decisions in the production cycle that include nutrient and
mineral supply to birds, cost and type of feed and a range of bird health, welfare and
environmental issues that affect the profitability of an operation. Prediction of growth and
identifying the times of maximum growth rate and when the birds are ready for sale are
important factors that contribute to the profitability of poultry operations. Traditionally,
mathematical functions called ‘growth functions’ have been used to relate body weight
(W) to age of the bird or cumulative dietary intake (McCance, 1960; Lister et al., 1966;
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Fitzhugh, 1976). They can also be used to determine efficiency of nutrient utilization,
which is the derivative of the relationship between W and cumulative dietary intake, and
as response functions to predict daily energy and protein dietary requirements for
maintenance and growth (France et al., 1989). A useful growth function should
describe data well and contain biologically and physically meaningful parameters
(France et al., 1996a). Attributes quantified using growth functions include protein
deposition (Strathe et al., 2010a), body weight (Porter et al., 2010), and mineral
deposition (Kebreab et al., 2010). López (2008) reviewed various nonlinear functions
used in animal nutrition to represent time-dependent processes and events, and examined
current and potential use of these functions to describe response to nutrients.
Growth functions can be broadly classified into three categories: those that describe

diminishing returns behaviour (e.g. monomolecular), sigmoidal behaviour with a fixed
point of inflexion (e.g. logistic, Gompertz, Schumacher), and sigmoidal behaviour with a
flexible point of inflexion (e.g. von Bertalanffy, Richards, López (also referred to as
Morgan), Weibull), as described in Chapter 5 of Thornley and France (2007). The
flexible functions are often generalized models that encompass simpler models for
particular values of certain additional parameters. The objective of this paper is to
review the applicability of growth functions for analyzing growth profiles in poultry.

Functional forms

The functional forms of the equations commonly used for W (or length or height) versus
age analysis are summarized in Table 1. The monomolecular equation is the simplest
nonlinear equation used in most studies reviewed and contains three parameters to be
estimated. The monomolecular equation describes the progress of a simple, irreversible
first-order reaction and exhibits diminishing incremental behaviour. Among the growth
functions with sigmoidal behaviour, the logistic equation can be derived by assuming that
the quantity of growth machinery is proportional to W, the growth machinery works at a
rate proportional to amount of nutrient (feed) and growth is irreversible. The inflexion
point is fixed at exactly half of Wf, where Wf is theoretical final weight (mature size) of
the bird (Table 1). The assumptions underlying the Gompertz equation are nutrient
supply is non-limiting, the quantity of growth machinery is proportional to W, and
effectiveness of the growth machinery decays exponentially with time according to a
decay constant. Inflexion in this sigmoidal growth function is fixed and occurs at W =
Wf /e. The Schumacher equation also exhibits sigmoidal behaviour with a fixed point of
inflexion (W = Wf /e

2). Like the logistic and Gompertz, the Schumacher can also be
derived as a two-state variable problem in which the specific growth rate decays
according to a 3/2 power function rather than log-linearly as in the Gompertz
(Thornley and France, 2007).

Table 1 The functional forms used to describe the relationship between body weight, W(t), and age (time)
or cumulative dietary intake, t.

Function1,2 W(t) References3

Straight line W W t t W W

W t W W
f

f f

= + ≤ −

= > −

0 0

0

α α

α

, ( )/

, ( )/   

Darmani Kuhi et al. (2001),
Schulin-Zeuthen et al.
(2007)
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Function1,2 W(t) References3

Monomolecu-
lar W W Wf f

ct− − −( )0 e Kebreab et al. (2007),
Schulin-Zeuthen et al.
(2007)

Logistic WW
W W W

f

f
ct

0

0 0+ − −( )e

Darmani Kuhi et al.
(2003b), Strathe et al.
(2010b)
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Gous et al. (1999),
Sakomura et al. (2005)

Schumacher
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t t0
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Schulin-Zeuthen et al.
(2008)

von Berta-
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0
1e Darmani Kuhi et al.

(2003b), Kebreab et al.
(2007)

Richards WW
W W W

f
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0

0 0
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Darmani Kuhi et al.
(2003b), Vedenov and Pesti
(2008)

France                    
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Darmani Kuhi et al.
(2003b)

López (Mor-
gan) W

W K W t
K t

n
f

n

n n=
+

+
0

Pesti et al. (2009), Porter et
al. (2010)

Weibull W W W ctf f
n− − −( )exp[ ( ) ]0

Schulin-Zeuthen et al.
(2008)

Bridges W W ctf
n= − −( exp( ))1 Craig and Schinckel (2001),

Strathe et al. (2010b)

1Thornley and France (2007); 2W0 is initial weight, Wf is final weight, the parameters µ0, t0, α, c, d and K are
positive entities, n≥–1; 3Example of recent studies with poultry or pigs where the equation has been used as a
growth or response function

Table 1 Continued
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In the von Bertalanffy equation, the assumptions are that nutrients are non-limiting, and
the growth process is the difference between anabolism and catabolism. It has a flexible
inflexion point that occurs at W = (1 − n)1/nWf. The Richards equation is a more empirical
construct, and therefore does not have the underlying biological basis of the von
Bertalanffy. However, it belongs to the same group of classic growth functions, and
its flexibility, due to its shape parameter n (dimensionless), makes it a generalized
alternative to other equations (e.g. monomolecular, Gompertz, logistic, von
Bertalanffy) (Thornley and France, 2007). The France equation is capable of
describing a range of diminishing returns and sigmoidal growth patterns. It has the
advantages over the Richards of being able to describe a wider variety of
possibilities, and of having a more mechanistic derivation. The López equation is a
generalized Michaelis-Menten equation akin to the Hill equation for enzyme kinetics.
Both the France and the Lopez equations are flexible growth functions that can be
derived from state variable considerations (Thornley and France, 2007).
The differential form of the Weibull equation is non-autonomous (i.e. explicitly time-

dependent), so the equation cannot be derived as a state variable problem and therefore
has little credible mechanistic basis in terms of a simple model. Nonetheless, it is a well
behaved and useful function. A special case of the Weibull (with W0 = 0) is the Bridges
equation. The initial condition W0 = 0 might well limit its applicability in the study of
growth curves in poultry.

Historical development

Graphical representation of animal growth was current prior to the 1920s when early fast
growth rate, point of inflexion, and slow approach to final asymptotic weight were
apparently based on visual appraisal of growth curves (e.g. Ritzman, 1917). However,
mathematical descriptions of these curves were almost non-existent. The sigmoidal shape
of the trajectory indicated that linear regression was not suitable to describe growth,
unless small portions of the curve only are considered or data are transformed.
Description and prediction of growth using equations emerged in agriculture from two
different directions: equations were either borrowed from human population studies or
developed specifically for animals and plants.
Mitscherlich-Königsberg (1909) proposed an equation with no accelerating phase to

describe the effect of chemical fertilisers on crop yields. The growth response obeyed the
law of diminishing increments, meaning that growth rate decreased continually and that
the curve had no point of inflexion. This equation is more commonly referred to as the
‘monomolecular’ because of its association with chemical reaction kinetics. Wood and
Yule (1914) referred to the law of diminishing increments in describing the relationship
between body weight gain and swede (rutabaga) intake in oxen, but did not mention
explicitly whether they used the monomolecular. Body weight as a function of feed
intake was first described using the monomolecular in poultry science by Jull and Titus
(1928) and Hendricks (1931) in studies with chickens. The monomolecular is inadequate
to describe the sigmoidal growth trajectory of young birds and mammals with respect to
time. Therefore, Brody (1945) brought the exponential and monomolecular equations
together to generate a curve having a sigmoidal shape. The monomolecular
(Mitscherlich) was first proposed by Blaxter and Boyne (1978) for describing the
relationship between energy retention and feed intake, based on a detailed analysis of
over 80 calorimetric experiments with sheep and cattle. Previously, this non-linear
relationship had been approximated with two straight lines intersecting at zero energy
retention (i.e. maintenance) (Blaxter and Wainman, 1961).

Growth functions in poultry: H. Darmani Kuhi et al.

230 World's Poultry Science Journal, Vol. 66, June 2010



The logistic equation, developed by the mathematician Verhulst (1838), was first
applied to animals by Robertson (1916, 1923), and thereafter by Pearl (1925), who
described the growth of mammals, plants, and yeast cells. Robertson (1908) had
originally applied the logistic to plants in studying autocatalysis. The Gompertz
equation (Gompertz, 1825) was first used as a growth function in animal science by
Wright (Wright, 1926; Winsor, 1932), a geneticist, who stated that growth curves of
individual organisms display an asymmetrical S-shape which is better described by a log-
log equation than by the logistic. Wright (1926) never referred to Gompertz in his paper,
but the equation he brought forward was in reality a linearised form of the Gompertz
(Wright, 1926; Winsor, 1932). Two years later, Davidson (1928) described the growth of
Jersey cows using the Gompertz. He was arguably one of the first to note that the point of
inflexion of the Gompertz is fixed and corresponds to maximum asymptotic body weight
divided by the base of natural logarithms. Winsor (1932) probably contributed to the
popularisation of the Gompertz in biology through his paper read at the US National
Academy of Sciences, and it has been used for purposes other than growth analysis, e.g.
to estimate glucose oxidation in broiler chickens (Buyse et al., 2004). Schulin-Zeuthen et
al. (2008) introduced another sigmoidal function, the Schumacher equation, into animal
science to describe growth in pigs. The Schumacher is analysed in detail by Thornley and
France (2007) and deviates considerably from its original empirical construct described in
Schumacher (1939) to represent timber yield.
The rise of systemics, a collection of organised and interrelated concepts to explain

causality, in science between 1920 and 1950 probably fostered the mechanistic
representation of growth (Dumas et al., 2008). Growth functions that attempt to
include biologically meaningful parameters and circumvent concerns about a fixed
point of inflexion as assumed in the logistic and Gompertz equations arose mostly
during this time period. Pütter (1920) conceptualized growth as anabolism prevailing
over catabolism. The biologist von Bertalanffy, a pioneer of systemics (von Bertalanffy,
1950), borrowed the concept proposed by Pütter (1920) and formalized it (von
Bertalanffy, 1957; Ricker, 1979), incorporating various assumptions such as allometry
and size dependence, to derive his growth function. The equation has an asymptote, Wf,
and a flexible point of inflexion (Thornley and France, 2007). Prior to von Bertalanffy,
Murray (1921) considered growth as a metabolic process and applied his equation to farm
animals using a value of two-thirds for the allometric exponent. Murray (1921) did not
refer to Pütter, nor differentiate between anabolism and catabolism in its mathematical
expression, and therefore gave no biological interpretation of the equation parameters.
However, it was assumed that metabolism adheres to the surface law and, for this reason,
adopted the value two-thirds. Lotka (1925), another pioneer of systemics, proposed a
similar equation, but overlooked the metabolic processes in play.
Richards (1959), a botanist, starting with the von Bertalanffy equation, developed a

more generic function. The Richards equation has four parameters and encompasses the
von Bertalanffy, Gompertz, logistic and monomolecular equations. The inflexion point
can occur at various fractions of the maximum asymptotic weight. The function is
generally flexible and accommodates various growth patterns (Thornley and France,
2007). It is sometimes referred to as the four-parameter logistic (e.g. Gahl et al.,
1991). The France equation is capable of describing a range of diminishing returns
and sigmoidal growth patterns (France et al., 1996b). It has the advantages over the
Richards of being able to describe a wider variety of possibilities, and of having a more
mechanistic derivation. The López equation is a generalized Michaelis-Menten akin to
the Hill equation for enzyme kinetics (Hill, 1910; Michaelis and Menten, 1913). It was
derived as a growth function by López et al. (2000) and proposed earlier as a response
function by Morgan et al. (1975). It is sometimes referred to as the saturation kinetics
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model when used to analyse nutritional response data (e.g. Vedenov and Pesti, 2008).
The López encompasses the simple Michaelis-Menten, a diminishing returns equation
which, although originally intended for enzyme kinetics, has been used to describe
weight gain of animals, effect of substrate on bacterial growth rate, and biochemical
flows in process-based simulation models of metabolism (Monod, 1942; Koehler et al.,
1988; López et al., 2000). Both the France and the Lopez equations are flexible growth
functions that can be derived from state variable considerations, unlike the Weibull
equation. The latter is the cumulative density function of the Weibull distribution, a
continuous probability distribution. It is named after Waloddi Weibull who described it in
detail (Weibull, 1951), although it was first identified by Frechet (1927) and first applied
by Rosin and Rammler (1933) to describe the size distribution of particles. The Bridges
equation, a special case of the Weibull, was proposed by Bridges et al. (1992), measuring
time from conception rather than from birth.
Most of these growth functions are now routinely applied in animal biology to predict

growth. Furthermore these, along with chemical kinetic equations, have proven
appropriate to describe complex dynamics and metabolic fluxes in mechanistic
simulation models as they exhibit a wide array of dynamic behaviour.

An illustrative case study

Among nutritional factors determining rate of growth of animals, dietary energy and
crude protein (CP) are without doubt the most important ones. The usefulness of growth
functions, particularly the monomolecular equation, to predict daily energy and protein
dietary requirements for maintenance and growth has recently been demonstrated in
broilers and turkeys (Darmani-Kuhi et al., 2003a, 2004, 2009 and Kebreab et al.,
2008). This illustrative case study aims to apply the monomolecular to provide an
estimate of cumulative metabolisable energy (ME) requirements, CP requirement for
maintenance, and efficiency of CP utilisation for growth in growing turkeys.

MATERIALS AND METHODS
Data sets, shown in Table 2, and the function forms, f(x), listed in Table 3 and 4, were

used to investigate the relationships between body weight and cumulative ME intake, and
between body weight gain and CP intake in two different analyses (Analysis I and II,
respectively). Note that growth functions (Table 1) need to be re-parameterised before
application to retention versus intake data (i.e. rate against rate) to permit negative values
of the intercept on the y-axis (France et al., 1989).

Table 2 Data sources used in the case study.

Source Growth
phase
(wk)

Strain and sex1 Consideration

Hurwitz et al. (1983)2 0-21 British United (M) Experimental validation of model
calculated requirements

Moran et al. (1984) 0-24 Nicholas (M)
British United (M)
Hybrid (M)

Divergent feeding systems (North
America and Western Europe systems)

Summers et al. (1989) 4-20 Large White Nicholas (M) Diets varying in protein content
NRC (1994) 0-24 Large Type Turkey (M) -
NRC (1994)2 0-20 Large Type Turkey (F) -
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Source Growth
phase
(wk)

Strain and sex1 Consideration

Waldroup et al. (1997) 4-20 Large White Nicholas (M) Effects of amino acid concentrations
(100, 110 and 120% of NRC) on
growth performance

Waldroup et al. (1998) 3-18 Large White Nicholas (M)
British United (M)

Effects of amino acid concentrations
(100, 110 and 120% of NRC) on
growth performance

1M = male, F = female
2These data were only used in Analysis II

Table 3 The functional forms used in Analysis I to describe the relationship between body weight, f(x),
and cumulative ME intake, x.

Equation f(x)1 df(x)/dx 2 x at inflexion

( *)x 2

f(x) at inflexion

( *)f 2

Monomolecular a a b cx− −( ) −e c a f x− ( )[ ] None None

Richards ab
b a bn n n cx n[ ] /+ −( ) − e 1 cf x a f x

na

n n

n
( )

− ( )[ ]⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
c

a b
nb

n n

nln
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a
n n+( )1 1/

1The parameters a and b (both g) are the final and initial values corresponding to Wf and W0, respectively, in
Table 1; c (MJ-1) is positive and n (dimensionless) ≥ −1
2df(x)/dx is at its maximum at the inflexion point (x*, f*)

Table 4 The monomolecular model used in Analysis II to describe the relationship between body weight
gain, f(x), and CP intake, x.

Equation1,2 f(x) xm

Monomolecular a a b cx− +( ) −e c a b a− +1 ln[( )/ ]

1France et al. (1989); 2The parameters a, b and c are positive entities, with fmax = a and fmin = −b. The
expressions for xm, where the subscript m denotes maintenance, were obtained as the x value when f(x) = 0

All statistical analyses were performed using the mixed non-linear procedure of SAS
(SAS, 2000). Mixed model analysis was chosen for analyses because the data were
gathered from various published reports and therefore there is a need to consider the
report (data source) factor as a random effect (because the studies represent a random
sample of a larger population of studies). Performance of the models was evaluated using
the significance level of the parameters estimated, variance of error estimate and its
standard error. Comparison of models was based on Bayesian Information Criteria
(BIC) (Leonard and Hsu, 2001).

RESULTS
Fitting the Richards equation (Analysis I) to the pooled cumulative ME intake data set
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showed that parameter n was not significantly different from −1. Therefore, the sigmoidal
trend was discarded and diminishing returns behaviour was assumed (Figure 1a). To
evaluate the performance of the monomolecular, a comparison was made with data used
for the calculation of cumulative ME requirements for male turkeys proposed by NRC
(1994). Body weight profiles were simulated from our model using the relevant
parameter estimates and compared with data from NRC (1994) (Figure 1b). There
was close agreement between the values of body weight proposed by NRC (1994)
and those obtained using our model. Figure 1c shows the fit of the monomolecular
equation to body weight gain versus CP intake data in Analysis II.

cMEI, MJ
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Figure 1 Plots of a) body weight (BW, g) against cumulative metabolisable energy intake (cMEI, MJ)
showing the fit of the monomolecular equation (Analysis I), b) comparison between BW proposed by
NRC (1994) and BW values estimated from cMEI using the monomolecular equation (Analysis I), c) rate
of BW gain (BWG, g/g BW/d) against crude protein intake (CPI, g/g BW/d) showing the fit of the
monomolecular equation (Analysis II).

The fitted curve and general goodness of fit, based on variation accounted for and
standard error (SE) estimated for the growth parameters, indicated that fit of the
monomolecular to the data sets was acceptable (Table 5).

Table 5 Parameter estimates obtained and growth indicators calculated using the monomolecular model
(Analysis II), standard errors are given in parentheses1.

Parameter estimates

a
g/g BW/d

b
g/g BW/d

c
(g CP/g BW/d)-1 σ2

error

-

0.1589
(0.0074)

0.0151
(0.0013)

22.95
(1.62)

0.000014
(0.000002)

96.45 -

Calculated growth indicators2

xm

g CP/kg BW/d

20 1 4× −kg( )3

%

kg

(1-4)4

kg

(1-2)4

kg

(2-3)4

kg

(3-4)4

3.95 64.2 3.21 3.49 3.19 2.91

1Number of observations = 199
2Indicators calculated based on parameter estimates for a, b and c3The average net protein utilisation for growth
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between 1-4 times maintenance calculated based on the assumption that the carcass of turkeys contains
approximately 20% crude protein
4The average efficiency of CP utilization for growth (g gain/g CP) between 1-4, 1-2, 2-3 and 3-4 times
maintenance

INFERENCE
Based on statistical performance and the biological interpretability of the parameter

estimates, it was found that the data could be accurately described by the monomolecular
equation (Table 5 and Figure 1). The CP requirement for maintenance (3.95 g/kg body
weight/d) and average net protein utilisation for growth between 1-4 times maintenance
(64%), calculated based on parameter estimates for the monomolecular (Table 5), agree
well with previous studies (Kebreab et al., 2008).

Comparing growth functions

Comparison of three and four parameter growth functions shows that in many cases a
four parameter growth function is required to describe growth versus age adequately.
Darmani Kuhi et al. (2003b) compared the Gompertz, logistic, López, Richards, von
Bertalanffy and France equations for describing growth in meat and egg strains of
chicken. In general the authors found the four parameter equations gave a better fit
but all parameter estimates were not always significant. The Richards was found to be
the best fitting model and the Gompertz fitted better than the logistic due to the lower
inflexion point observed in the data. Therefore, consideration of flexible growth functions
as an alternative to simpler equations (with a fixed point of inflexion) for describing the
relationship between body weight and age are recommended in chickens (Darmani Kuhi
et al., 2003b). However, using the Richards equation can sometimes lead to optimisation
problems and the process can fail to converge, primarily due to difficulty in estimating
initial W (W0) values. If W0 is known and does not need to be estimated, fixing W0 might
solve the problem of non-convergence with the Richards. On the other hand, if W0 has
already been estimated using the equation, fixing it might worsen the fit (France et al.,
1996a).
Porter et al. (2010) compared three flexible growth functions (von Bertalanffy,

Richards, and López) and evaluated them with regard to their ability to describe the
relationship between W and age in growing turkey hens from commercial flocks. They
also compared the flexible functions with the Gompertz. The authors reported that the
fixed inflexion point of the Gompertz was a limitation, and that the relationship between
W and age in turkeys was best described using flexible growth functions. However, they
ran into optimisation problems with the Richards and reported that the López was best in
describing growth in turkeys.
Similar to poultry growth, Kebreab et al. (2007) reported for pigs that using a more

complex (four parameter) function resulted in lower BIC values (therefore, better) than
using three parameter functions and the additional parameter was justified because it gave
flexibility to a growth function. The authors argue that although the Gompertz has been
used extensively, four parameter growth functions such as the Richards were superior in
describing growth over time and are recommended for use in growth data analysis in
monogastric animals. Among the four parameter growth functions, Schinckel et al.
(2006) showed that the López equation produced a marginally better fit for pig
growth data than the Weibull and the Bridges equations. Strathe et al. (2010b)
compared four growth functions to describe growth profiles from barrows, boars, and
gilts and reported that based on Akaike Information Criteria (Burnham and Anderson,

Growth functions in poultry: H. Darmani Kuhi et al.

World's Poultry Science Journal, Vol. 66, June 2010 235



2002) the ranking was López > Bridges > Gompertz > Logistic. One of the reasons for
the Logistic equation performing poorly when describing growth is the inflexion point
occurs at a much earlier stage than half mature body size. The Gompertz has a lower
inflexion point compared to the logistic and usually does better in describing growth.
Schulin-Zeuthen et al. (2008) reported that the Schumacher equation did better than the
Gompertz based on BIC values. Part of the reason could be that, in the Schumacher, the
inflexion point occurs at an earlier age compared to the Gompertz and the logistic. The
authors also reported that the Weibull was better than the Gompertz based on residual
mean squares but some of the parameters were not significant.
A diminishing returns rather than a sigmoidal function is in most cases all that is

required to describe growth versus cumulative dietary intake or rate of retention versus
daily nutrient intake adequately. A standard growth function needs to be re-parameterised
before it can be applied retention versus intake data to allow negative values of the y-axis
intercept (France et al., 1989). Our case study has demonstrated the applicability of the
monomolecular to these analyses in growing turkeys, a result confirmed previously for
broilers (Darmani-Kuhi et al., 2003a, 2009 and Kebreab et al., 2008) and turkeys
(Darmani-Kuhi et al., 2004).

Conclusions

For describing growth versus age in poultry and pigs, a fixed point of inflexion can be a
limitation with equations such as the Gompertz and logistic. In general, the point of
inflexion occurs at weights less than half of final weight and varies depending on age,
sex, breed and type of animal. Therefore, it has been reported in many cases that four
parameter equations with a flexible inflexion point fit growth data better. In some cases
optimisation problems can occur with equations such as the Richards but consideration is
needed on a case by case basis. The López has frequently been shown to be an
appropriate mathematical function for growth profile analysis in both poultry and pigs.
For describing growth versus cumulative dietary intake and retention rate against daily
intake, which generally do not exhibit an inflexion point, the monomolecular would
appear the function of choice.
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