3,544 research outputs found
Near-infrared spatially resolved spectroscopy of (136108) Haumea's multiple system
The transneptunian region of the solar system is populated by a wide variety
of icy bodies showing great diversity. The dwarf planet (136108) Haumea is
among the largest TNOs and displays a highly elongated shape and hosts two
moons, covered with crystalline water ice like Hamuea. Haumea is also the
largest member of the sole TNO family known to date. A catastrophic collision
is likely responsible for its unique characteristics. We report here on the
analysis of a new set of observations of Haumea obtained with SINFONI at the
ESO VLT. Combined with previous data, and using light-curve measurements in the
optical and far infrared, we carry out a rotationally resolved spectroscopic
study of the surface of Haumea. We describe the physical characteristics of the
crystalline water ice present on the surface of Haumea for both regions, in and
out of the Dark Red Spot (DRS), and analyze the differences obtained for each
individual spectrum. The presence of crystalline water ice is confirmed over
more than half of the surface of Haumea. Our measurements of the average
spectral slope confirm the redder characteristic of the spot region. Detailed
analysis of the crystalline water-ice absorption bands do not show significant
differences between the DRS and the remaining part of the surface. We also
present the results of applying Hapke modeling to our data set. The best
spectral fit is obtained with a mixture of crystalline water ice (grain sizes
smaller than 60 micron) with a few percent of amorphous carbon. Improvements to
the fit are obtained by adding ~10% of amorphous water ice. Additionally, we
used the IFU-reconstructed images to measure the relative astrometric position
of the largest satellite Hi`iaka and determine its orbital elements. An orbital
solution was computed with our genetic-based algorithm GENOID and our results
are in full agreement with recent results.Comment: Accepted for publication in A&
The Resolved Asteroid Program - Size, shape, and pole of (52) Europa
With the adaptive optics (AO) system on the 10 m Keck-II telescope, we
acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa
on 2005 January 20. The epochs covered its rotation period and, by following
its changing shape and orientation on the plane of sky, we obtained its
triaxial ellipsoid dimensions and spin pole location. An independent
determination from images at three epochs obtained in 2007 is in good agreement
with these results. By combining these two data sets, along with a single epoch
data set obtained in 2003, we have derived a global fit for (52) Europa of
diameters (379x330x249) +/- (16x8x10) km, yielding a volume-equivalent
spherical-diameter of 315 +/- 7 km, and a rotational pole within 7 deg of [RA;
Dec] = [257,+12] in an Equatorial J2000 reference frame (ECJ2000: 255,+35).
Using the average of all mass determinations available forEuropa, we derive a
density of 1.5 +/- 0.4, typical of C-type asteroids. Comparing our images with
the shape model of Michalowski et al. (A&A 416, 2004), derived from optical
lightcurves, illustrates excellent agreement, although several edge features
visible in the images are not rendered by the model. We therefore derived a
complete 3-D description of Europa's shape using the KOALA algorithm by
combining our imaging epochs with 4 stellar occultations and 49 lightcurves. We
use this 3-D shape model to assess these departures from ellipsoidal shape.
Flat facets (possible giant craters) appear to be less distinct on (52) Europa
than on other C-types that have been imaged in detail. We show that fewer giant
craters, or smaller craters, is consistent with its expected impact history.
Overall, asteroid (52) Europa is still well modeled as a smooth triaxial
ellipsoid with dimensions constrained by observations obtained over several
apparitions.Comment: Accepted for publication in Icaru
Deep imaging survey of young, nearby austral stars: VLT/NACO near-infrared Lyot-coronographic observations
Context. High contrast and high angular resolution imaging is the optimal search technique for substellar companions to nearby stars at physical separations larger than typically 10 AU. Two distinct populations of substellar companions, brown dwarfs and planets, can be probed and characterized. As a result, fossile traces of processes of formation and evolution can be revealed by physical and orbital properties, both for individual systems and as an ensemble.
Aims. Since November 2002, we have conducted a large, deep imaging, survey of young, nearby associations of the southern hemisphere. Our goal is detection and characterization of substellar companions with projected separations in the range 10–500 AU. We have observed a sample of 88 stars, primarily G to M dwarfs, younger than 100 Myr, and within 100 pc of Earth.
Methods. The VLT/NACO adaptive optics instrument of the ESO Paranal Observatory was used to explore the faint circumstellar environment between typically 0.1 and 10". Diffraction-limited observations in H and K_s-band combined with Lyot-coronagraphy enabled us to reach primary star-companion brightness ratios as small as 10^(-6). The existence of planetary mass companions could therefore be probed. We used a standardized observing sequence to precisely measure the position and flux of all detected sources relative to their visual primary star. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects.
Results. We report the discovery of 17 new close (0.1–5.0") multiple systems. HIP 108195 AB and C (F1 III-M6), HIP 84642 AB (a~14 AU, K0-M5) and TWA22 AB (a~1.8 AU; M6-M6) are confirmed comoving systems. TWA22 AB is likely to be a rare astrometric calibrator that can be used to test evolutionary model predictions. Among our complete sample, a total of 65 targets were observed with deep coronagraphic imaging. About 240 faint companion candidates were detected around 36 stars. Follow-up observations with VLT or HST for 83% of these stars enabled us to identify a large fraction of background contaminants. Our latest results that pertain to the substellar companions to GSC 08047-00232, AB Pic and 2M1207 (confirmed during this survey and published earlier), are reviewed. Finally, a statistical analysis of our complete set of coronagraphic detection limits enables us to place constraints on the physical and orbital properties of giant planets between typically 20 and 150 AU
Unusual Entropy of Adsorbed Methane on Zeolite-Templated Carbon
Methane adsorption at high pressures and across a wide range of temperatures was investigated on the surface of three porous carbon adsorbents with complementary structural properties. The measured adsorption equilibria were analyzed using a method that can accurately account for nonideal fluid properties and distinguish between absolute and excess quantities of adsorption, and that also allows the direct calculation of the thermodynamic potentials relevant to adsorption. On zeolite-templated carbon (ZTC), a material that exhibits extremely high surface area with optimal pore size and homogeneous structure, methane adsorption occurs with unusual thermodynamic properties that are greatly beneficial for deliverable gas storage: an enthalpy of adsorption that increases with site occupancy, and an unusually low entropy of the adsorbed phase. The origin of these properties is elucidated by comparison of the experimental results with a statistical mechanical model. The results indicate that temperature-dependent clustering (i.e., reduced configurations) of the adsorbed phase due to enhanced lateral interactions can account for the peculiarities of methane adsorbed on ZTC
From Bloch model to the rate equations II: the case of almost degenerate energy levels
Bloch equations give a quantum description of the coupling between an atom
and a driving electric force. In this article, we address the asymptotics of
these equations for high frequency electric fields, in a weakly coupled regime.
We prove the convergence towards rate equations (i.e. linear Boltzmann
equations, describing the transitions between energy levels of the atom). We
give an explicit form for the transition rates. This has already been performed
in [BFCD03] in the case when the energy levels are fixed, and for different
classes of electric fields: quasi or almost periodic, KBM, or with continuous
spectrum. Here, we extend the study to the case when energy levels are possibly
almost degenerate. However, we need to restrict to quasiperiodic forcings. The
techniques used stem from manipulations on the density matrix and the averaging
theory for ordinary differential equations. Possibly perturbed small divisor
estimates play a key role in the analysis. In the case of a finite number of
energy levels, we also precisely analyze the initial time-layer in the rate
aquation, as well as the long-time convergence towards equilibrium. We give
hints and counterexamples in the infinite dimensional case
(16) Psyche: A mesosiderite-like asteroid?
Asteroid (16) Psyche is the target of the NASA Psyche mission. It is
considered one of the few main-belt bodies that could be an exposed
proto-planetary metallic core and that would thus be related to iron
meteorites. Such an association is however challenged by both its near- and
mid-infrared spectral properties and the reported estimates of its density.
Here, we aim to refine the density of (16) Psyche to set further constraints on
its bulk composition and determine its potential meteoritic analog.
We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large
program (ID 199.C-0074). We used the high angular resolution of these
observations to refine Psyche's three-dimensional (3D) shape model and
subsequently its density when combined with the most recent mass estimates. In
addition, we searched for potential companions around the asteroid. We derived
a bulk density of 3.99\,\,0.26\,gcm for Psyche. While such
density is incompatible at the 3-sigma level with any iron meteorites
(7.8\,gcm), it appears fully consistent with that of
stony-iron meteorites such as mesosiderites (density
4.25\,cm). In addition, we found no satellite in our images
and set an upper limit on the diameter of any non-detected satellite of
1460\,\,200}\,m at 150\,km from Psyche (0.2\%\,\,R, the
Hill radius) and 800\,\,200\,m at 2,000\,km (3\%\,\,).
Considering that the visible and near-infrared spectral properties of
mesosiderites are similar to those of Psyche, there is merit to a
long-published initial hypothesis that Psyche could be a plausible candidate
parent body for mesosiderites.Comment: 16 page
Change Mining in Adaptive Process Management Systems
The wide-spread adoption of process-aware information systems has resulted in a bulk of computerized information about real-world processes. This data can be utilized for process performance analysis as well as for process improvement. In this context process mining offers promising perspectives. So far, existing mining techniques have been applied to operational processes, i.e., knowledge is extracted from execution logs (process discovery), or execution logs are compared with some a-priori process model (conformance checking). However, execution logs only constitute one kind of data gathered during process enactment. In particular, adaptive processes provide additional information about process changes (e.g., ad-hoc changes of single process instances) which can be used to enable organizational learning. In this paper we present an approach for mining change logs in adaptive process management systems. The change process discovered through process mining provides an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for all kinds of process improvement actions, e.g., it may trigger process redesign or better control mechanisms
- …