5,540 research outputs found

    Sterilizable photomultiplier tubes Final report

    Get PDF
    Environment, static acceleration, vibration, shock, gas contamination, and life tests in development of sterilizable photomultipliers for space program

    Improved sterilizable multiplier phototubes Final report

    Get PDF
    Development of sterilizable multiplier phototube for scintillation counte

    Compositional characterisation of the Themis family

    Full text link
    Context. It has recently been proposed that the surface composition of icy main-belt asteroids (B-,C-,Cb-,Cg-,P-,and D-types) may be consistent with that of chondritic porous interplanetary dust particles (CPIDPs). Aims. In the light of this new association, we re-examine the surface composition of a sample of asteroids belonging to the Themis family in order to place new constraints on the formation and evolution of its parent body. Methods. We acquired NIR spectral data for 15 members of the Themis family and complemented this dataset with existing spectra in the visible and mid-infrared ranges to perform a thorough analysis of the composition of the family. Assuming end-member minerals and particle sizes (<2\mum) similar to those found in CPIDPs, we used a radiative transfer code adapted for light scattering by small particles to model the spectral properties of these asteroids. Results. Our best-matching models indicate that most objects in our sample possess a surface composition that is consistent with the composition of CP IDPs.We find ultra-fine grained Fe-bearing olivine glasses to be among the dominant constituents. We further detect the presence of minor fractions of Mg-rich crystalline silicates. The few unsuccessfully matched asteroids may indicate the presence of interlopers in the family or objects sampling a distinct compositional layer of the parent body. Conclusions. The composition inferred for the Themis family members suggests that the parent body accreted from a mixture of ice and anhydrous silicates (mainly amorphous) and subsequently underwent limited heating. By comparison with existing thermal models that assume a 400km diameter progenitor, the accretion process of the Themis parent body must have occurred relatively late (>4Myr after CAIs) so that only moderate internal heating occurred in its interior, preventing aqueous alteration of the outer shell.Comment: 9 pages, 5 figures, accepted for publication in A&

    A survey of young, nearby, and dusty stars to understand the formation of wide-orbit giant planets

    Full text link
    Direct imaging has confirmed the existence of substellar companions on wide orbits. To understand the formation and evolution mechanisms of these companions, the full population properties must be characterized. We aim at detecting giant planet and/or brown dwarf companions around young, nearby, and dusty stars. Our goal is also to provide statistics on the population of giant planets at wide-orbits and discuss planet formation models. We report a deep survey of 59 stars, members of young stellar associations. The observations were conducted with VLT/NaCo at L'-band (3.8 micron). We used angular differential imaging to reach optimal detection performance. A statistical analysis of about 60 % of the young and southern A-F stars closer than 65 pc allows us to derive the fraction of giant planets on wide orbits. We use gravitational instability models and planet population synthesis models following the core-accretion scenario to discuss the occurrence of these companions. We resolve and characterize new visual binaries and do not detect any new substellar companion. The survey's median detection performance reaches contrasts of 10 mag at 0.5as and 11.5 mag at 1as. We find the occurrence of planets to be between 10.8-24.8 % at 68 % confidence level assuming a uniform distribution of planets in the interval 1-13 Mj and 1-1000 AU. Considering the predictions of formation models, we set important constraints on the occurrence of massive planets and brown dwarf companions that would have formed by GI. We show that this mechanism favors the formation of rather massive clump (Mclump > 30 Mj) at wide (a > 40 AU) orbits which might evolve dynamically and/or fragment. For the population of close-in giant planets that would have formed by CA, our survey marginally explore physical separations (<20 AU) and cannot constrain this population

    Combined quantum state preparation and laser cooling of a continuous beam of cold atoms

    Get PDF
    We use two-laser optical pumping on a continuous atomic fountain in order to prepare cold cesium atoms in the same quantum ground state. A first laser excites the F=4 ground state to pump the atoms toward F=3 while a second pi-polarized laser excites the F=3 -> F'=3 transition of the D2 line to produce Zeeman pumping toward m=0. To avoid trap states, we implement the first laser in a 2D optical lattice geometry, thereby creating polarization gradients. This configuration has the advantage of simultaneously producing Sisyphus cooling when the optical lattice laser is tuned between the F=4 -> F'=4 and F=4 -> F'=5 transitions of the D2 line, which is important to remove the heat produced by optical pumping. Detuning the frequency of the second pi-polarized laser reveals the action of a new mechanism improving both laser cooling and state preparation efficiency. A physical interpretation of this mechanism is discussed.Comment: Minor changes according to the recommendations of the referee: - Corrected Fig.1. - Split the graph of Fig.6 for clarity. - Added one reference. - Added two remarks in the conclusion. - Results unchange

    Near-infrared spatially resolved spectroscopy of (136108) Haumea's multiple system

    Full text link
    The transneptunian region of the solar system is populated by a wide variety of icy bodies showing great diversity. The dwarf planet (136108) Haumea is among the largest TNOs and displays a highly elongated shape and hosts two moons, covered with crystalline water ice like Hamuea. Haumea is also the largest member of the sole TNO family known to date. A catastrophic collision is likely responsible for its unique characteristics. We report here on the analysis of a new set of observations of Haumea obtained with SINFONI at the ESO VLT. Combined with previous data, and using light-curve measurements in the optical and far infrared, we carry out a rotationally resolved spectroscopic study of the surface of Haumea. We describe the physical characteristics of the crystalline water ice present on the surface of Haumea for both regions, in and out of the Dark Red Spot (DRS), and analyze the differences obtained for each individual spectrum. The presence of crystalline water ice is confirmed over more than half of the surface of Haumea. Our measurements of the average spectral slope confirm the redder characteristic of the spot region. Detailed analysis of the crystalline water-ice absorption bands do not show significant differences between the DRS and the remaining part of the surface. We also present the results of applying Hapke modeling to our data set. The best spectral fit is obtained with a mixture of crystalline water ice (grain sizes smaller than 60 micron) with a few percent of amorphous carbon. Improvements to the fit are obtained by adding ~10% of amorphous water ice. Additionally, we used the IFU-reconstructed images to measure the relative astrometric position of the largest satellite Hi`iaka and determine its orbital elements. An orbital solution was computed with our genetic-based algorithm GENOID and our results are in full agreement with recent results.Comment: Accepted for publication in A&

    Improving the Acoustic Performance of Linear Multi-Element Transducers

    Get PDF
    The electro-acoustic performance of transducers has a direct impact on the performance of ultrasound inspections. The signal/noise ratio and the resolution (both axial and lateral) are key factors for detecting and/or proportioning the indications being sought. The signal/noise ratio partly depends on the sensitivity and the signal/noise ratio of the transducer itself. The axial resolution depends on the length of the signal and therefore, for a given maximum frequency, on the damping of the transducer. Sensitivity and damping are often considered antagonistic, as damping traditionally reduces resonance and therefore sensitivity. Earlier studies have demonstrated the advantages gained through using piezocomposite technology to improve this compromise. These two parameters also depend on the acoustic adaptation to the coupling medium (water, plexiglass, rexolite, steel, etc.), and according to the design used, performance deteriorates more or less as one moves further from the nominal use. In addition to sensitivity and the signal/noise ratio, other parameters such as the angular acceptance and resistance to abrasion are sometimes to be integrated in the expected performances. This article presents the recent developments undertaken and tested in the context of improving the acoustic performance of multi-element probes: - Identification of the components that influence performance; - Simulations; - Selection of the configurations that meet the needs of various applications; - The experimental results obtained; - Comparison with the simulations. These studies have led to the development of a design expertise for responding to requests for custom-made, industrial, multi-element probes with improved performance, for production runs from a single item to dozens, even hundreds. The detailed results will be presented, as well as the possibilities for future development
    • …
    corecore