Context. It has recently been proposed that the surface composition of icy
main-belt asteroids (B-,C-,Cb-,Cg-,P-,and D-types) may be consistent with that
of chondritic porous interplanetary dust particles (CPIDPs). Aims. In the light
of this new association, we re-examine the surface composition of a sample of
asteroids belonging to the Themis family in order to place new constraints on
the formation and evolution of its parent body. Methods. We acquired NIR
spectral data for 15 members of the Themis family and complemented this dataset
with existing spectra in the visible and mid-infrared ranges to perform a
thorough analysis of the composition of the family. Assuming end-member
minerals and particle sizes (<2\mum) similar to those found in CPIDPs, we used
a radiative transfer code adapted for light scattering by small particles to
model the spectral properties of these asteroids. Results. Our best-matching
models indicate that most objects in our sample possess a surface composition
that is consistent with the composition of CP IDPs.We find ultra-fine grained
Fe-bearing olivine glasses to be among the dominant constituents. We further
detect the presence of minor fractions of Mg-rich crystalline silicates. The
few unsuccessfully matched asteroids may indicate the presence of interlopers
in the family or objects sampling a distinct compositional layer of the parent
body. Conclusions. The composition inferred for the Themis family members
suggests that the parent body accreted from a mixture of ice and anhydrous
silicates (mainly amorphous) and subsequently underwent limited heating. By
comparison with existing thermal models that assume a 400km diameter
progenitor, the accretion process of the Themis parent body must have occurred
relatively late (>4Myr after CAIs) so that only moderate internal heating
occurred in its interior, preventing aqueous alteration of the outer shell.Comment: 9 pages, 5 figures, accepted for publication in A&